COMUNE DI EMPOLI PROVINCIA DI FIRENZE

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

PROGETTO DEFINITIVO

ATI DI PROGETTAZIONE:

MANDATARIA

EUTECNE :

architettura | ingegneria

Via A.Volta, 88 06135 Perugia T +39 075 32 761

Via Roma, 20/a 57034 Campo nell'Elba (Li) Isola d'Elba T/F +39 0565 977 589

office@eutecne.it www.eutecne.it

RESPONSABILE DELLA PROGETTAZIONE ING. FEDERICO FRAPPI

MANDANTI

Via Belvedere, 8-10 30035Mirano(VE)

Via G.Di Vittorio, 15 20017 Rho (MI)

GRUPPO DI PROGETTAZIONE

Dott. Ing. Francesco ARDINO Dott. Arch. Olimpia LORENZINI Ing. Sonia ANTONELLI Dott. Ing. Noemi BRIGANTI

Dott. Ing. Luca DELL'AVERSANO Dott. Arch. Debora PALUMMO

Dott. Arch. Luca FRAPPI

Dott. Geol. Armando GRAZI

Dott. Ing. Martina RICCI

Dott. Ing. Giulia BENEDETTI Dott. Ing. Massimo FALCINELLI

Dott. Arch. Gaia ROSI CAPPELLANI Dott. Ing. Sandro FAVERO

Dott. Ing. Tommaso TASSI

Dott. Ing. Alessandro BONAVENTURA

Dott. Ing. Federico ZAGGIA

Dott. Ing. Paolo BINDI Dott. Ing. Dario BANDI

COMMITTENTE:

COMUNE DI EMPOLI

R.U.P. Ing. Roberta SCARDIGLI

TITOLO RELAZIONE TECNICA E DI CALCOLO SULLE STRUTTURE

ELAB. SR1A

SCALA CODICE COMMESSA C51D_SR1A

REV.N	DATA	MOTIVO DELLA EMISSIONE	ESEGUITO	CONTROLLATO	APPROVATO
Α	OTT. 2020	PROGETTO DEFINITIVO	G.BENEDETTI	F.ARDINO	F.FRAPPI

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE

_			
	Documento:		
	C51D_SR1A		
	Rev.	Data	
	Α	Ottobre 2020	
	Pag. 1 di 1		
	J		

La presente relazione di calcolo strutturale consta di due parti: una riferita al corpo A della Scuola e una riferita al corpo B della palestra e pensilina.

Si allega, inoltre, l'analisi dei carichi dei solai presenti nell'edificio della scuola (Allegato 1_Corpo A_Analisi dei carichi)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 1 di 86		
	C51D_Si Rev.	

CORPO A: SCUOLA

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 2 di 86		

INDICE

RELAZIONE DI CALCOLO STRUTTURALE	4
Premessa	4
Descrizione generale dell'opera	4
Quadro normativo di riferimento adottato	5
Azioni di progetto sulla costruzione	5
Modello numerico	6
Informazioni sul codice di calcolo	6
Modellazione delle azioni	8
Combinazioni e/o percorsi di carico	8
Verifiche agli stati limite ultimi	9
Verifiche agli stati limite di esercizio	9
RELAZIONE SUI MATERIALI	9
NORMATIVA DI RIFERIMENTO	11
CARATTERISTICHE MATERIALI UTILIZZATI	13
LEGENDA TABELLA DATI MATERIALI	13
MODELLAZIONE DELLE SEZIONI	24
LEGENDA TABELLA DATI SEZIONI	24
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	27
TABELLA DATI TRAVI	27
MODELLAZIONE STRUTTURA: ELEMENTI SHELL	29
LEGENDA TABELLA DATI SHELL	29
MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	30
LEGENDA TABELLA DATI SOLAI-PANNELLI	30
SCHEMATIZZAZIONE DEI CASI DI CARICO	35
SCHEMATIZZAZIONE DEI CASI DI CARICO	37
LEGENDA TABELLA CASI DI CARICO	37
DEFINIZIONE DELLE COMBINAZIONI	44
LEGENDA TABELLA COMBINAZIONI DI CARICO	44
AZIONE SISMICA	46
VALUTAZIONE DELL' AZIONE SISMICA	46
Parametri della struttura	46

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 3 di 86		

RISULTATI ANALISI SISMICHE	48
LEGENDA TABELLA ANALISI SISMICHE	48
RISULTATI NODALI	49
LEGENDA RISULTATI NODALI	49
RISULTATI ELEMENTI TIPO TRAVE	55
LEGENDA RISULTATI ELEMENTI TIPO TRAVE	55
RISULTATI ELEMENTI TIPO SHELL	62
LEGENDA RISULTATI ELEMENTI TIPO SHELL	62
VERIFICHE PER ELEMENTI IN ACCIAIO	66
LEGENDA TABELLA VERIFICHE PER ELEMENTI IN ACCIAIO	66
STATI LIMITE D' ESERCIZIO ACCIAIO	67
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO ACCIAIO	67
VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A	68
LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A	68
STATI LIMITE D' ESERCIZIO	72
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO	72
VERIFICHE S.L. ELEMENTI IN LEGNO	73
LEGENDA TABELLA VERIFICHE S.L. ELEMENTI IN LEGNO	73
VERIFICHE ELEMENTI PARETE E/O GUSCIO IN C.A	81
LEGENDA TABELLA VERIFICHE ELEMENTI PARETE E GUSCIO IN C.A	81
VERIFICHE DI RESISTENZA AL FLIOCO	25

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

1	T _				
	Documento:				
	C51D_SR1A				
	Rev. Data				
	A Ottobre 2020				
	Pag. 4 di 86				
	_				

RELAZIONE DI CALCOLO STRUTTURALE

Premessa

La presente relazione di calcolo strutturale, in conformità al §10.1 del DM 17/01/18, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

Descrizione generale dell'opera

In particolare la presente relazione si riferisce al "CorpoA" del progetto, ovvero quello della scuola. Si tratta di un edificio realizzato in setti portanti in C.A., con solai alleggeriti e travi in C.A. A questi si affiancano travi e pilastri in legno lamellare situati nella zone dell'ingresso e della mensa, ai quali sono stati abbinati solai in Xlam di spessore 14cm.

La struttura di fondazione è realizzata con travi rovesce in C.A. su cui poggiano i setti portanti ed i pilastri in legno lamellare. Per le fondazioni si rimanda alla relazione specifica "Relazione geotecnica e delle fondazioni".

Descrizione general	e dell'opera
Fabbricato ad uso	Scolastico
	Comune di EMPOLI (FI) (Regione TOSCANA)
Ubicazione	Località EMPOLI PONTORME (FI)
	Longitudine 10.947, Latitudine 43.719
	Fuori terra 2
Numero di piani	Interrati 0
	le dimensioni dell'opera in pianta sono racchiuse in un rettangolo di 21x62 m
Numero vani scale	Scale aperte nella zona dell'agorà all'ingresso, e scale esterne vicino alla mensa
Numero vani ascensore	1
Tipo di fondazione	Graticcio di travi rovesce

Principali caratteristiche della struttura		
Struttura regolare in pianta	No	
Struttura regolare in altezza	No	
Classe di duttilità	Struttura non dissipativa	
Travi: ricalate o in spessore	Travi in C.A. come architravi e come rompitratta in spessore di solaio	
Pilastri	Si, in legno lamellare di diverse dimensioni	

Parametri della struttura			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]
IV	100.0	2.0	200.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
1 200 1 2000		
A	Ottobre 2020	
Pag. 5 di 86		

Fattore di struttura/comportamento		
Valore base fattore	q ₀ =	1.000
Fattore di regolarità	K _R =	0.8
Fattore dissipativo	$q_D = q_0 \cdot K_R =$	1.000
Fattore non dissipativo	$q_{ND} = 2/3 \cdot q_{D} =$	1.000 (≤1.5)
Si è considerato un comportamento non dissipativo della struttura, con fattore q=1		
·	·	

Quadro normativo di riferimento adottato

Le norme ed i documenti assunti quale riferimento per la progettazione strutturale vengono indicati di seguito. Nel capitolo "normativa di riferimento" è comunque presente l'elenco completo delle normative disponibili.

Progetto-verifica degli elementi		
Progetto cemento armato	D.M. 17-01-2018	
Progetto acciaio	D.M. 17-01-2018	
Progetto legno	D.M. 17-01-2018	
Azione sismica		
Norma applicata per l' azione sismica	D.M. 17-01-2018	

Azioni di progetto sulla costruzione

Nei capitoli "modellazione delle azioni" e "schematizzazione dei casi di carico" sono indicate le azioni sulla costruzioni.

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico,dinamico, lineare o non lineare) e il metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * u = F dove K = matrice di rigidezza
u = vettore spostamenti nodali
F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto. Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

Elemento tipo *TRUSS* (biella-D2) Elemento tipo *BEAM* (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3)
Elemento tipo **PLATE** (piastra-guscio-D3)
Elemento tipo **BOUNDARY** (molla)

Elemento tipo STIFFNESS (matrice di rigidezza)

Elemento tipo **BRICK** (elemento solido)

Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 6 di 86	

Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-18, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità

Tipo di analisi strutturale	
Carichi verticali	SI
Sismica dinamica lineare	SI

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Informazioni sul codice di calcolo		
Titolo:	PRO_SAP PROfessional Structural Analysis Program	
Versione:	PROFESSIONAL (build 2020-09-190)	
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.I., Ferrara	
Codice Licenza:	Licenza dsi5313	

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: https://www.2si.it/it/prodotti/affidabilita/

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:	
C51D_SR1A	
Rev.	Data
	Out-1 0000
Α	Ottobre 2020
<u> </u>	
Pag. 7 di 86	

Modellazione della geometria e proprietà meccaniche:		
nodi	1186	
elementi D2 (per aste, travi, pilastri)	473	
elementi D3 (per pareti, platee, gusci)	810	
elementi solaio	173	
elementi solidi	0	
Dimensione del modello struttura	ıle [cm]:	
X min =	-0.00	
Xmax =	6226.32	
Ymin =	-2554.12	
Ymax =	153.00	
Zmin =	-0.00	
Zmax =	915.00	
Strutture verticali:		
Elementi di tipo asta	NO	
Pilastri	SI	
Pareti	SI	
Setti (a comportamento membranale)	NO	
Strutture non verticali:		
	No.	
Elementi di tipo asta	NO	
Travi	SI	
Gusci	SI	
Membrane	NO	
Orizzontamenti:		
Solai con la proprietà piano rigido	SI	
Solai senza la proprietà piano rigido	SI	
Tipo di vincoli:		
Nodi vincolati rigidamente	NO	
Nodi vincolati elasticamente	NO	
Nodi con isolatori sismici	NO	
Fondazioni puntuali (plinti/plinti su palo)	NO	
Fondazioni di tipo trave	SI	
Fondazioni di tipo platea	NO	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 8 di 86		

Modellazione delle azioni

Si veda il capitolo "Schematizzazione dei casi di carico" per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "Definizione delle combinazioni" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

Combinazioni dei casi di carico	
APPROCCIO PROGETTUALE	Approccio 2
Tensioni ammissibili	NO
SLU	SI
SLV (SLU con sisma)	SI
SLC	NO
SLD	SI
SLO	SI
SLU GEO A2 (per approccio 1)	NO
SLU EQU	NO
Combinazione caratteristica (rara)	SI
Combinazione frequente	SI
Combinazione quasi permanente (SLE)	SI
SLA (accidentale quale incendio)	SI

Principali risultati

l risultati devono costituire una sintesi completa ed efficace, presentata in modo da riassumere il comportamento della struttura, per ogni tipo di analisi svolta.

Nella presente relazione di calcolo sono riportati i seguenti risultati che il progettista ritiene di interesse per la descrizione e la compresione del/i modello/i e del comportamento della struttura:

per l'analisi modale:

- periodi dei modi di vibrare della struttura
- masse eccitate dai singoli modi
- massa eccitata totale

deformate e sollecitazioni:

- spostamenti e rotazioni dei singoli nodi della struttura
- reazioni vincolari (nel caso siano presenti nodi vincolati rigidamente)
- pressioni sul terreno (nel caso siano presenti elementi di fondazione)
- sollecitazioni sugli elementi d2 nelle combinazioni di calcolo più significative
- tensioni sugli elementi d3 nelle combinazioni di calcolo più significative
- sollecitazioni sui macroelementi da elementi d3 nelle combinazioni di calcolo più significative

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 9 di 86	
. ag. 3 a. 60	

La presente relazione, oltre ad illustrare in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare, riporta una serie di immagini: per i dati in ingresso:

- modello solido della struttura
- numerazione di nodi e ed elementi
- configurazioni di carico statiche
- configurazioni di carico sismiche con baricentri delle masse e eccentricità

per le combinazioni più significative (statisticamente più gravose per la struttura):

- configurazioni deformate
- diagrammi e inviluppi delle azioni interne
- mappe delle tensioni
- reazioni vincolari
- mappe delle pressioni sul terreno

per il progetto-verifica degli elementi:

- diagrammi di armatura
- percentuali di sfruttamento
- mappe delle verifiche più significative per i vari stati limite

Informazioni generali sull'elaborazione e giudizio motivato di accettabilità dei risultati.

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. Si allega al termine della presente relazione elenco sintetico dei controlli svolti (verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.).

Verifiche agli stati limite ultimi

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLU vengono indicate, con riferimento alla normativa adottata, le modalità ed i criteri seguiti per valutare la sicurezza della struttura nei confronti delle possibili situazioni di crisi ed i risultati delle valutazioni svolte. In via generale, oltre alle verifiche di resistenza e di spostamento, devono essere prese in considerazione verifiche nei confronti dei fenomeni di instabilità, locale e globale, di fatica, di duttilità, di degrado.

Verifiche agli stati limite di esercizio

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLE vengono indicate, con riferimento alla normativa adottata, le modalità seguite per valutare l'affidabilità della struttura nei confronti delle possibili situazioni di perdita di funzionalità (per eccessive deformazioni, fessurazioni, vibrazioni, etc.) ed i risultati delle valutazioni svolte.

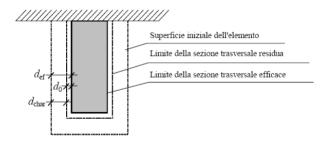
RELAZIONE SUI MATERIALI

Il capitolo Materiali riportata informazioni esaustive relative all'elenco dei materiali impiegati e loro modalità di posa in opera e ai valori di calcolo.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

1	Documento:	
	C51D_SR1A	
	Rev.	Data
	Α	Ottobre 2020
	Pag. 10 di 86	


VERIFICHE DI RESISTENZA AL FUOCO

La struttura oggetto della presente relazione è stata progetta in classe di resistenza al fuoco R60.

ELEMENTI IN LEGNO:

Le verifiche per elementi in legno sono condotte in ottemperanza alla norma tecnica UNI EN 1995-1-2:2005 "Eurocodice 5 - Progettazione delle strutture di legno - Parte 1-2: Regole generali – Progettazione strutturale contro l' incendio".

In particolare, nella definizione degli elementi nel programma di calcolo, sono state inserite le informazioni necessarie per eseguire le verifiche di resistenza al fuoco con il metodo della sezione ridotta.

$$d_{ef} = d_{char,n} + K_0 d_0 = \beta_n t + K_0 d_0$$

Le informazioni considerate sono:

- Tempo di esposizione (t): 60 minuti, essendo la struttura R60.
- Velocità di carbonizzazione ideale (Vbetan), che include gli effetti di fessurazioni e arrotondamento degli spigoli: definita nell'archivio materiali che, per legno lamellare di conifere e faggio assume valore **0.7 mm/min.**
- Coeff. **K0 = 1**, per tempi di esposizione maggiori di 20 minuti.
- Valore massimo di differenza tra sezione residua e efficace (d0): **7 mm**.
- Profondità di sezione da depurare per ottenere la sezione trasversale efficace (def):

def = (Vbetan x t) + k0 x d0 = 49 mm.

- Lati esposti al fuoco, tenendo conto della direzione degli assi locali degli elementi.

All'interno del programma di calcolo, l'indicazione in merito alla velocità di carbonizzazione viene inserita nell'archivio materiali. Per gli elementi D2, le informazioni circa i lati esposti al fuoco e il tempo di esposizione con relativo calcolo della sezione ridotta, sono inserite al momento della definizione della sezione. Per gli elementi D3, lo spessore di carbonizzazione e i lati esposti al fuoco sono indicati nei criteri di progetto.

Per gli esiti delle verifiche si rimanda al capitolo specifico.

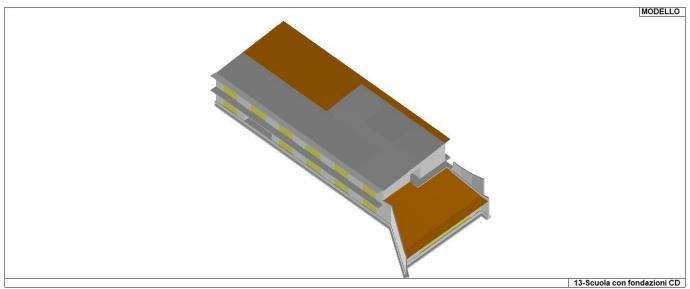
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

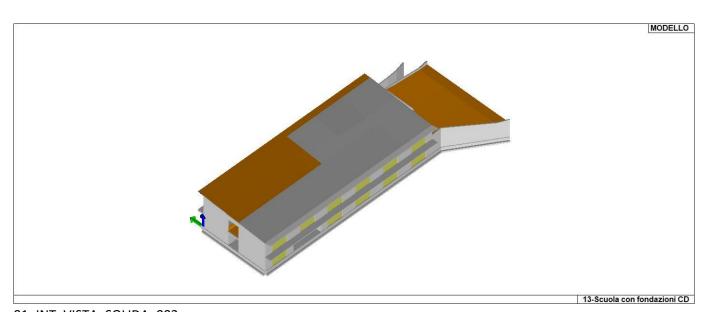
Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 11 di 86	

NORMATIVA DI RIFERIMENTO

- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 4. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 6. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 7. Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- 8. Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 9. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 11. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 12. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 13. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 14. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 15. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 16. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 17. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 18. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 19. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 20. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 21. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 22. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.
- 23. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 24. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 25. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 26. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 27. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 28. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 29. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- 30. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.
- 31. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 32. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 33. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adeguamento degli edifici.
- 34. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A


	Documento:							
	C51D_SR1A							
	Rev. Data							
	A Ottobre 2020 Pag. 12 di 86							

di contenimento ed aspetti geotecnici.

NOTA il capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.

01_INT_VISTA_SOLIDA_001

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:							
C51D_SR1A							
Rev.	Rev. Data						
A Ottobre 2020							
Р	Pag. 13 di 86						

CARATTERISTICHE MATERIALI UTILIZZATI LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
	· · · · · · · · · · · · · · · · · · ·
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale E			
Poisson	coefficiente di contrazione trasversale ni			
G	modulo di elasticità tangenziale			
Gamma	peso specifico			
Alfa	coefficiente di dilatazione termica			
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo			
	se diverso da quello globale della struttura)			
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo			
	se diverso da quello globale della struttura)			
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari			
Massima compressione	Massima tensione di compressione per aste non lineari			
Massima trazione	Massima tensione di trazione per aste non lineari			
Fattore attrito	Coefficinete di attrito per aste non lineari			
Rapporto HRDb	Rapporto di hardening a flessione			
Rapporto HRDv	Rapporto di hardening a taglio			

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

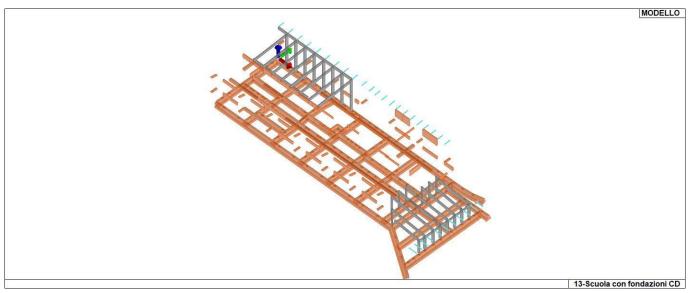
1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

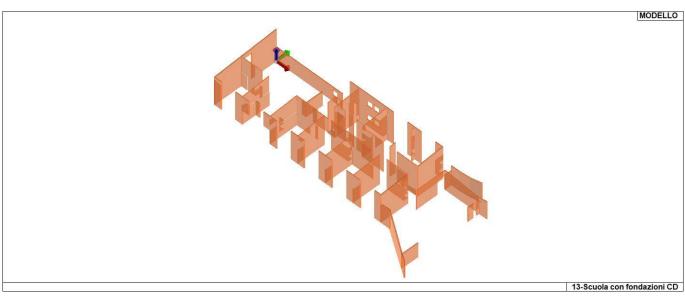
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:							
C51D_SR1A							
Rev.	Data						
A Ottobre 2020							
Pag. 14 di 86							


Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
	daN/ m2	daN/ m2	daN/ m2		daN/ m2	daN/ m3		
1 Calcestruzzo Classe C25/30			3.145e+09	0.20	1.310e+09	2500.0	1.00e-05	
Resistenza Rc	3.000e+06							
Resistenza fctm		2.558e+05						
Rapporto Rfessurata								1.00
Coefficiente ksb								0.85
Rapporto HRDb								1.00e-05
Rapporto HRDv								1.00e-05
13 Acciaio Fe510 - S355-acciaio Fe510-S355			2.100e+10	0.30	8.077e+09	7850.0	1.20e-05	
Tensione ft	5.100e+07							
Resistenza fd	3.550e+07							
Resistenza fd (>40)	3.150e+07							
Tensione ammissibile	2.400e+07							
Tensione ammissibile (>40)	2.100e+07							
Rapporto HRDb								1.00e-05
Rapporto HRDv								1.00e-05
129 Legno lamellare omogeneo GL24h-legno E :	_		1.150e+09	0.0	6.500e+07	420.0	1.00e-05	
1.150e+05-legno E = 1.150e+05				0.0	0.0000.01	0.0		
Modulo E0.05			9.599e+08					+
Lamellare : SI			0.0000.00					+
Resistenza fc0	2.400e+06							
Resistenza ft0	1.920e+06							+
Resistenza fm	2.400e+06							+
Resistenza fv	3.500e+05							+
Rapporto HRDb	0.0000100							1.00e-05
Rapporto HRDv								1.00e-05
145 Legno E = 1.260e+05 XLAM Pannelli orizzor	ntali		1.019e+09	0.0	6.900e+07	500.0	1.00e-05	11000 00
isotropi (XLAM -2- oriz)-legno E = 1.019e+0				0.0	0.0000.01	000.0		
Modulo E0.05			1.019e+09					+
Lamellare : SI								+
Resistenza fc0	1.000e+04							+
Resistenza ft0	1.000e+04							+
Resistenza fm	1.000e+04							+
Resistenza fv	1.000e+04			1		1		+
Rapporto HRDb								1.00e-05
Rapporto HRDv				1		1		1.00e-05
158 panelli-materiale E = 100.00			1.000e+06	0.0	5.000e+05	2500.0	0.0	
Rapporto HRDb				0.0	5.0000.00	_555.5	0.0	1.00e-05
Rapporto HRDv		1						1.00e-05


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

	Documento: C51D_SR1A Data Data						
-							
	Pag. 15 di 86						


11_MOD_MATERIALI_D2

11_MOD_MATERIALI_D3

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:							
C51D_SR1A							
Rev.	Rev. Data						
Α	A Ottobre 2020						
Pag. 16 di 86							

11_MOD_MATERIALI_SOLAI

Travi acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
3-3 Beta * L automatico	SI	SI	SI	SI	SI	SI
	SI	SI				
3-3 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
<u> </u>	1.00	1.00				
3-3 Beta assegnato [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
2-2 Beta * L automatico	SI	SI	SI	SI	SI	SI
	SI	SI				
2-2 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
2-2 Beta * L assegnato [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
1-1 Beta * L automatico	SI	SI	SI	SI	SI	SI
	SI	SI				
1-1 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
1-1 Beta * L assegnato [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Generalità						
Coefficiente gamma M0	1.05	1.05	1.05	1.05	1.05	1.05
	1.05	1.05				
Coefficiente gamma M1	1.05	1.05	1.05	1.05	1.05	1.05
	1.05	1.05				
Coefficiente gamma M2	1.25	1.25	1.25	1.25	1.25	1.25
	1.25	1.25				
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00	1.00	1.00
"	1.00	1.00				
Usa condizioni I e II	SI	SI	SI	SI	SI	SI
	SI	SI				1
Momenti equivalenti	SI	SI	SI	SI	SI	SI
	SI	SI				

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Singolo elemento					
		FONDAZIONE	NON DISSIPATIVO			

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
	Singolo elemento	Singolo elemento FONDAZIONE				
Armatura						
Inclinazione Av [gradi]	90.00	90.00	90.00	90.00	90.00	90.00
J. 5. 5 J	90.00	90.00				
Angolo Av-Ao [gradi]	90.00	90.00	90.00	90.00	90.00	90.00
, ,	90.00	90.00				
Minima tesa	0.20	0.20	0.20	2.000e-02	0.20	0.20
	0.20	0.20				
Massima tesa	4.00	4.00	4.00	4.00	4.00	4.00
	4.00	4.00				
Maglia unica centrale	NO	NO	NO	NO	NO	NO
	NO	NO				
Jnico strato rerticale	NO	NO	NO	NO	NO	NO
	NO	NO				
Jnico strato orizzontale	NO	NO	NO	NO	NO	NO
	NO	NO				
Copriferro [cm]	2.00	2.00	2.00	2.00	2.00	2.00
	2.00	2.00				
Maglia V						
diametro	10	10	10	10	12	12
	12	10	-			-=
asso	25	25	25	25	20	20
4000	20	25				
iametro aggiuntivi	12	12	12	12	16	16
iameno aggiuntivi	16	12	12	12	10	10
/laglia O	10	12				
liametro	10	10	10	10	12	12
liameno	12	10	10	10	12	12
.0000	25	25	25	25	25	25
passo	25 25	25	23	20	23	23
	12	12	12	12	16	16
liametro aggiuntivi	16	12	12	12	10	10
Stati limite ultimi	10	12				
	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07
ensione fy [daN/ n2]			4.500e+07	4.500e+07	4.5000+07	4.500e+07
Tine enginin	4.500e+07	4.500e+07	ting C	tin o C	tino C	ting C
ipo acciaio	tipo C	tipo C	tipo C	tipo C	tipo C	tipo C
	tipo C	tipo C	4.45	4.45		
Coefficiente gamma		1.15	1.15	1.15	1.15	1.15
	1.15	1.15	1.50	. = 0		
Coefficiente gamma		1.50	1.50	1.50	1.50	1.50
, 10.1	1.50	1.50	01	01	01	01
/erifiche con N costante	SI	SI	SI	SI	SI	SI
Tensioni	SI	SI				
ammissibili Tensione amm. cls	975000.00	975000.00	975000.00	975000.00	975000.00	975000.00
daN/ m2]	975000.00	975000.00	3. 5555.55	0.000.00	3. 3000.00	3. 2000.00
Tensione amm.	2.600e+07	2.600e+07	2.600e+07	2.600e+07	2.600e+07	2.600e+07
acciaio [daN/ m2]			2.0006707	2.0006707	2.0006707	2.0006707
	2.600e+07	2.600e+07	45.00	45.00	45.00	45.00
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00	15.00	15.00
•	15.00	15.00				
Massimo rapporto	1.00	1.00	1.00	1.00	1.00	1.00
area compressa/tesa	1.00	1.00	1.00	1.00	1.00	1.00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 18 di 86					

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
	1.00	1.00	0,0,		G/ 1 1/11	<u> </u>
Parete estesa debolmente	1.00	1.00				
armata						
Fattore amplificazione taglic	0.0	1.50	1.50	0.0	0.0	0.0
V	0.0	1.50				
Hcrit. par. 7.4.4.5.1	0.0	0.0	0.0	0.0	0.0	0.0
[CIII]	0.0	0.0				
Hcrit. par. 7.4.6.1.4		0.0	0.0	0.0	0.0	0.0
1	0.0	0.0				
Diagramma inviluppo taglio	NO	NO	NO	NO	NO	NO
	NO	NO				
Vincolo lati	nessun lato					
	nessun lato	nessun lato				
Verifica come fascia	NO	NO	NO	NO	NO	NO
	NO	NO				
Diametro di estremità	0	0	0	0	0	0
	0	0				
Zona confinata						
Minima tesa	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
Massima tesa	4.00	4.00	4.00	4.00	4.00	4.00
	4.00	4.00				
Distanza barre [cm		2.00	2.00	2.00	2.00	2.00
	2.00	2.00				
Interferro	2	2	2	2	2	2
	2	2				
Armatura inclinata						
Area barre [cm2]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Angolo orizzontale gradi]		0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Distanza di base [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Resistenza al fuoco						
3- intradosso	NO	NO	NO	NO	NO	SI
	SI	NO				
3+ estradosso	NO	NO	NO	NO	SI	NO
	SI	NO				
Tempo di esposizione R	15	15	15	15	60	60
	60	15				

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetta a filo	NO	NO	NO	NO	NO	NO
	NO	NO				
Af inf: da q*L*L /	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Armatura						
Minima tesa	0.31	0.15	0.13	2.000e-02	0.31	0.31
	0.31	0.15				
Minima compressa	0.31	0.15	0.13	2.000e-02	0.31	0.31
	0.31	0.15				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 19 di 86					

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Massima tesa	2.00	4.00	4.00	4.00	0.78	0.78
Wassiiia tesa	0.78	4.00	1.00	1.00	0.70	0.70
Da sezione	SI	SI	SI	SI	SI	SI
24 00210110	SI	SI	0.	0.	0.	0.
Usa armatura teorica	NO	NO	NO	NO	NO	NO
ood difficulty toomed	NO	NO				
Stati limite ultimi	1.0	1.0				
Tensione fy [daN/ m2]	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4.500e+07					
Tensione fy staffe [daN/ m2]	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07	4.500e+07
	4.500e+07	4.500e+07				
Tipo acciaio	tipo C	tipo C	tipo C	tipo C	tipo C	tipo C
1	tipo C	tipo C				
Coefficiente gamma s	1.15	1.15	1.15	1.15	1.15	1.15
	1.15	1.15				
Coefficiente gamma c	1.50	1.50	1.50	1.50	1.50	1.50
	1.50	1.50				
Verifiche con N costante	SI	SI	SI	SI	SI	SI
	SI	SI				
Fattore di ridistribuzione	0.0	0.0	0.0	0.0	0.0	0.0
. GEO. O GI HOLDING	0.0	0.0				
Modello per il confinamento	0.0					
Relazione tensio-deformativa	Mander	Mander	Mander	Mander	Mander	Mander
Telazione tensio acionnativa	Mander	Mander	Mariaci	Mariaci	Mariaci	Mariaci
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03
moradimento acciaio	5.000e-03	5.000e-03	3.0000 03	3.0000 03	3.0000 03	3.0000 03
Fattore lambda	1.00	1.00	1.00	1.00	1.00	1.00
rattore iambua	1.00	1.00	1.00	1.00	1.00	1.00
onsilon may s	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02
epsilon max,s	4.000e-02	4.000e-02 4.000e-02	4.000e-02	4.000e-02	4.0006-02	4.0000-02
anailan avo	4.500e-02	4.500e-02	4.50000	4.500- 00	4.50000	4.50000
epsilon cu2	4.500e-03	4.500e-03 4.500e-03	4.500e-03	4.500e-03	4.500e-03	4.500e-03
anailan an	0.0		0.0	0.0	0.0	0.0
epsilon c2	0.0	0.0	0.0	0.0	0.0	0.0
anailan ay			0.0	0.0	0.0	0.0
epsilon cy	0.0	0.0	0.0	0.0	0.0	0.0
Tanalani ammiasibili	0.0	0.0				
Tensioni ammissibili	075000.00	075000 00	075000 00	075000 00	975000.00	075000.00
Tensione amm. cls [daN/ m2]	975000.00	975000.00	975000.00	975000.00	975000.00	975000.00
Tanaiana amma anaisia (daN/ m2)	975000.00	975000.00	0.00007	2.600e+07	0.00007	0.00007
Tensione amm. acciaio [daN/ m2]	2.600e+07	2.600e+07	2.600e+07	2.600e+07	2.600e+07	2.600e+07
D	2.600e+07	2.600e+07	45.00	45.00	45.00	45.00
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00	15.00	15.00
	15.00	15.00				
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
Staffe						
Diametro staffe	0.0	10.00	0.0	0.0	0.0	0.0
	0.0	10.00	ļ	ļ	ļ	ļ
December 1		0.00	14.00	4.00	4.00	4.00
Passo minimo [cm]	4.00	8.00	4.00	1.00		
	4.00	5.00				
Passo minimo [cm]	4.00 30.00	5.00 30.00	30.00	30.00	30.00	30.00
Passo massimo [cm]	4.00 30.00 30.00	5.00 30.00 30.00	30.00	30.00		
Passo massimo [cm]	4.00 30.00 30.00 15.00	5.00 30.00 30.00 15.00			30.00 15.00	30.00 15.00
Passo massimo [cm] Passo raffittito [cm]	4.00 30.00 30.00 15.00 15.00	5.00 30.00 30.00 15.00	30.00 15.00	30.00 15.00	15.00	15.00
Passo massimo [cm]	4.00 30.00 30.00 15.00	5.00 30.00 30.00 15.00 15.00 50.00	30.00	30.00		
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm]	4.00 30.00 30.00 15.00 15.00 50.00	5.00 30.00 30.00 15.00 15.00 50.00	30.00 15.00 50.00	30.00 15.00 50.00	15.00 50.00	15.00 50.00
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm]	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50	30.00 15.00	30.00 15.00	15.00	15.00
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm]	4.00 30.00 30.00 15.00 15.00 50.00	5.00 30.00 30.00 15.00 15.00 50.00	30.00 15.00 50.00	30.00 15.00 50.00 2.50	15.00 50.00 2.50	15.00 50.00 2.50
Passo massimo [cm] Passo raffittito [cm]	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50	30.00 15.00 50.00	30.00 15.00 50.00	15.00 50.00	15.00 50.00
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50	30.00 15.00 50.00 2.50	30.00 15.00 50.00 2.50	15.00 50.00 2.50	15.00 50.00 2.50
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50	30.00 15.00 50.00 2.50	30.00 15.00 50.00 2.50	15.00 50.00 2.50	15.00 50.00 2.50
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max Percentuale sagomati	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0 0.0	30.00 15.00 50.00 2.50	30.00 15.00 50.00 2.50	15.00 50.00 2.50 0.0	15.00 50.00 2.50
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max Percentuale sagomati	4.00 30.00 30.00 15.00 15.00 50.00 2.50 2.50 0.0 0.0	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0	30.00 15.00 50.00 2.50 0.0	30.00 15.00 50.00 2.50 0.0	15.00 50.00 2.50 0.0	15.00 50.00 2.50
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max Percentuale sagomati Luce di taglio per GR [cm]	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0 0.0 1.00 NO	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0 0.0 1.00 NO	30.00 15.00 50.00 2.50	30.00 15.00 50.00 2.50	15.00 50.00 2.50 0.0	15.00 50.00 2.50 0.0
Passo massimo [cm] Passo raffittito [cm] Lunghezza zona raffittita [cm] Ctg(Teta) Max Percentuale sagomati Luce di taglio per GR [cm]	4.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0 0.0 1.00	5.00 30.00 30.00 15.00 15.00 50.00 50.00 2.50 2.50 0.0 0.0	30.00 15.00 50.00 2.50 0.0	30.00 15.00 50.00 2.50 0.0	15.00 50.00 2.50 0.0	15.00 50.00 2.50 0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 20 di 86				

1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
	NO	NO	NO	NO	NO
		SI	SI	SI	SI
		NO	NO	NO	NO
		0.	0.	0.	0.1
SI	SI	SI	SI	SI	SI
20.00	20.00	20.00	20.00	20.00	20.00
		5.00	5.00	5.00	5.00
5.00	5.00				
0.45	0.45	0.45	0.45	0.45	0.45
		0.15	0.15	0.15	0.15
		0.00	0.00	0.00	0.00
		3.00	3.00	3.00	3.00
		0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0
		7,000- 00	7,000- 00	7,000- 00	7,000- 00
		7.000e-02	7.000e-02	7.000e-02	7.000e-02
7.000e-02	7.000e-02				
4.50007	4.50007	4.500 07	4.50007	4.500 07	4.50007
		4.500e+07	4.500e+07	4.500e+07	4.500e+07
		tim = C	tim = 0	tim = 0	tim = 0
		tipo C	tipo C	tipo C	tipo C
		4.45			4.45
		1.15	1.15	1.15	1.15
		4.50	4.50	4.50	4.50
		1.50	1.50	1.50	1.50
		0.0	0.0	0.0	0.0
0.0	0.0				
050000 00	050000 00	050000 00	050000 00	050000 00	050000 00
		850000.00	850000.00	850000.00	850000.00
		2.6000+07	2.6000+07	2.6000+07	2.6000.107
		2.600e+07	2.600e+07	2.600e+07	2.600e+07
		15.00	15.00	15.00	15.00
		15.00	15.00	15.00	15.00
		1.00	1.00	1.00	1.00
		1.00	1.00	1.00	1.00
1.00	1.00				
100.00	250.00	250.00	250.00	250.00	250.00
		230.00	230.00	230.00	230.00
		500.00	500.00	500.00	500.00
		300.00	300.00	300.00	300.00
		3 00	3 00	3 00	3.00
		5.00	5.00	5.00	5.00
		NO	NO	NO	NO
		110	110	110	110
110	01				
NO	NO	NO	NO	NO	NO
		NO	NO	NO	NO
2.00	2.00	2.00	2.00	2.00	2.00
	2.00	00	00	00	00
2.00			0.0	0.0	0.0
2.00		0.0	U.O	() ₋ ()	
0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0				
0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0				
	NO NO NO SI SI SI NO NO SI SI SI 20.00 20.00 5.00 5.00 5.00 0.15 0.15 3.00 3.00 0.0 0.0 7.000e-02 7.000e-02 7.000e-02 4.500e+07 4.500e+07 tipo C tipo C 1.15 1.15 1.15 1.150 1.50 0.0 0.0 850000.00 850000.00 2.600e+07 15.00 15.00 11.00 190.00 250.00 450.00 3.00 3.00 3.00 3.00 3.00 SI NO NO NO NO	NO	NO N	NO	NO

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 21 di 86				

Legno	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
aste	0.00	0.00	0.00	0.00	0.00	0.00
Beta assegnato	0.80	0.80	0.80	0.80	0.80	0.80
	0.80	0.80				
ravi	NO	01	01	01	01	01
3-3 Beta * L	NO	SI	SI	SI	SI	SI
utomatico	01	01				
	SI	SI	4.00	4.00	4.00	4.00
3-3 Beta assegnato		1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
8-3 Beta * L	0.0	0.0	0.0	0.0	0.0	0.0
ssegnato [cm]						
	0.0	0.0				
2-2 Beta * L	NO	SI	SI	SI	SI	SI
automatico						
	SI	SI				
2-2 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
?-2 Beta * L	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
	0.0	0.0				
I-1 Beta * L	SI	SI	SI	SI	SI	SI
automatico	_					
	SI	SI				1
I-1 Beta assegnato		1.00	1.00	1.00	1.00	1.00
- i Deta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
-1 Beta * L	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0
ssegnato [cm]	0.0	0.0				
	0.0	0.0				
oilastri ⁄letodo di calcolo 3- s		Assegnato	Assegnato	Assegnato	Assegnato	Assegnato
	Assegnato	Assegnato				
3-3 Beta assegnato		2.00	2.00	2.00	2.00	2.00
	2.00	2.00				
3-3 Beta * L	0.0	0.0	0.0	0.0	0.0	0.0
ssegnato [cm]						
<u> </u>	0.0	0.0				
Metodo di calcolo 2-	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato
2	, tooog.tato	, tooog. rate	, 1000g. 1010	, 1000g. idio	, 1000g. idio	oooga.o
	Assegnato	Assegnato				
2-2 Beta assegnato	2.00	2.00	2.00	2.00	2.00	2.00
. Z Deta assegnato	2.00	2.00	2.00	2.00	2.00	2.00
2-2 Beta * L	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]	0.0	0.0				+
			1.00	1.00	1.00	1.00
I-1 Beta assegnato		1.00	1.00	1.00	1.00	1.00
	1.00	1.00			<u> </u>	0.0
1 4 D - (- + 1	0.0	0 0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]			0.0	0.0	0.0	0.0
assegnato [cm]	0.0	0.0	0.0	0.0	0.0	0.0
ssegnato [cm] Seneralità	0.0	0.0				
Seneralità Gamma non	0.0	0.0	1.50	1.50	1.50	1.50
Seneralità Samma non sismico	0.0 1.50	0.0 1.50 1.50	1.50	1.50	1.50	1.50
Seneralità Samma non ismico	0.0 1.50 1.50 1.50	0.0 1.50 1.50 1.50				
Generalità Gamma non sismico Gamma sismico	0.0 1.50	0.0 1.50 1.50	1.50	1.50	1.50	1.50
Seneralità Samma non ismico Samma sismico	0.0 1.50 1.50 1.50	1.50 1.50 1.50 1.50 1.50	1.50	1.50	1.50	1.50
Generalità Gamma non dismico Gamma sismico Classificazione	0.0 1.50 1.50 1.50	0.0 1.50 1.50 1.50	1.50	1.50	1.50	1.50
Generalità Gamma non dismico Gamma sismico Classificazione Classe di servizio	0.0 1.50 1.50 1.50 1.50 2 (media umidità)	0.0 1.50 1.50 1.50 1.50 2 (media umidità)	1.50	1.50	1.50	1.50
Generalità Gamma non sismico Gamma sismico Classificazione Classe di servizio	0.0 1.50 1.50 1.50 1.50	1.50 1.50 1.50 1.50 1.50	1.50	1.50	1.50	1.50
Generalità Gamma non sismico Gamma sismico Classificazione Classe di servizio Per classe di	0.0 1.50 1.50 1.50 1.50 2 (media umidità)	0.0 1.50 1.50 1.50 1.50 2 (media umidità)	1.50	1.50	1.50	1.50
Generalità Gamma non ismico Gamma sismico Classificazione Classe di servizio Per classe di servizio 1	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità)	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)
Generalità Gamma non sismico Gamma sismico Classificazione Classe di servizio Per classe di servizio 1	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità)	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità) 0.60	1.50	1.50	1.50	1.50
Generalità Gamma non sismico Gamma sismico Classificazione Classe di servizio Per classe di servizio 1 Kmod permanente	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità)	0.0 1.50 1.50 1.50 1.50 2 (media umidità) 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)	1.50 1.50 2 (media umidità)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 22 di 86					

Legno	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Kmod media	0.80	0.80	0.80	0.80	0.80	0.80
	0.80	0.80				
Kmod breve	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90				
Kmod istantanea	1.10	1.10	1.10	1.10	1.10	1.10
	1.10	1.10				
Kdef	0.60	0.60	0.60	0.60	0.60	0.60
	0.60	0.60				
Per classe di servizio 2						
Kmod permanente	0.60	0.60	0.60	0.60	0.60	0.60
	0.60	0.60				
Kmod lunga	0.70	0.70	0.70	0.70	0.70	0.70
	0.70	0.70				
Kmod media	0.80	0.80	0.80	0.80	0.80	0.80
	0.80	0.80				
Kmod breve	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90				
Kmod istantanea	1.10	1.10	1.10	1.10	1.10	1.10
	1.10	1.10				
Kdef	0.80	0.80	0.80	0.80	0.80	0.80
	0.80	0.80				
Per classe di servizio 3						
Kmod permanente	0.50	0.50	0.50	0.50	0.50	0.50
	0.50	0.50				
Kmod lunga	0.55	0.55	0.55	0.55	0.55	0.55
	0.55	0.55				
Kmod media	0.65	0.65	0.65	0.65	0.65	0.65
	0.65	0.65				
Kmod breve	0.70	0.70	0.70	0.70	0.70	0.70
	0.70	0.70				
Kmod istantanea	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90				
Kdef	2.00	2.00	2.00	2.00	2.00	2.00
	2.00	2.00				

XLAM	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
L direzione 1 [*] [cm]	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00				
L direzione 2 [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Verifica V da D.38	NO	NO	NO	NO	NO	NO
	NO	NO				
Verifica M da M.5-45	NO	NO	NO	NO	NO	NO
	NO	NO				
Media valori elementi	SI	SI	SI	SI	SI	SI
	SI	SI				
Connessioni pareti						
rvpk [daN/ m]	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00
	5000.00	5000.00				
rvtk [daN/ m]	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00
	5000.00	5000.00				
rvlk [daN/ m]	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00
-	5000.00	5000.00				
RHk [daN]	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00
-	5000.00	5000.00				
dH [cm]	25.00	25.00	25.00	25.00	25.00	25.00
	25.00	25.00				
fcH90k [daN/ m2]	200000.00	200000.00	200000.00	200000.00	200000.00	200000.00
	200000.00	200000.00				
Pannelli solaio						
f ist <l <="" td=""><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td></l>	500.00	500.00	500.00	500.00	500.00	500.00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev. Data				
Α	Ottobre 2020			
Pag. 23 di 86				
	C51D_Si Rev.			

XLAM	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
	500.00	500.00				
f inf <l <="" td=""><td>350.00</td><td>350.00</td><td>350.00</td><td>350.00</td><td>350.00</td><td>350.00</td></l>	350.00	350.00	350.00	350.00	350.00	350.00
	350.00	350.00				
Verifica vibrazioni (EC5 7.3)	NO	NO	NO	NO	NO	NO
	NO	NO				
E massetto collaborante [daN/ m2]	2.000e+09	2.000e+09	2.000e+09	2.000e+09	2.000e+09	2.000e+09
	2.000e+09	2.000e+09				
t massetto collaborante [cm]	4.00	4.00	4.00	4.00	4.00	4.00
	4.00	4.00				
Smorzamento percentuale	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
Resistenza al fuoco						
Spessore carbonizzazione [cm]	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0				
3- intradosso	NO	NO	NO	NO	NO	NO
	NO	NO				
3+ estradosso	NO	NO	NO	NO	NO	NO
	NO	NO				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev. Data				
Α	Ottobre 2020			
Pag. 24 di 86				

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione	
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)	
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)	
Jt	fattore torsionale di rigidezza	
J2-2	momento d'inerzia della sezione riferito all'asse 2	
J3-3	momento d'inerzia della sezione riferito all'asse 3	
W2-2	modulo di resistenza della sezione riferito all'asse 2	
W3-3	modulo di resistenza della sezione riferito all'asse 3	
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2	
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3	•

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

H	Ht BS THS	Ht Bi Hi a T rovescia	Ht Bs Hs Bi As A T di colmo	Ht Bi → Thi	Hi Ht Ht Albinata
Hs Hs Ht	Ht Bs THs Ht Bin a L rovescia	a L di colmo	BS IHs IHi Bin IHi a doppio T	Hn → Hs Hn → Hs Bi Bi Hi Bi Hi a quattro specchiata	Hn Hs Hs Hs Hi Bi Hi a quattro
Ht Bi → Thi	Ht Bs IHi	He Be H	circolare	H Hi B Tettangolare cava	Re Ri circolare cava

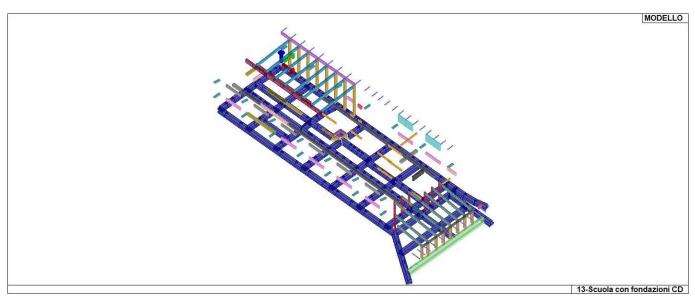
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev. Data				
A Ottobre 2020				
Pag. 25 di 86				

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3


ld	Tipo		A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	trave aula sostegno- Rettangolare: b=20 h=32	640.00	533.33	533.33	5.173e+04	2.133e+04	5.461e+04	2133.33	3413.33	3200.00	5120.00
2	trave ingresso- Rettangolare: b=20 h=60	1200.00	1000.00	1000.00	1.264e+05	4.000e+04	3.600e+05	4000.00	1.200e+04	6000.00	1.800e+04
3	trave mensa- Rettangolare: b=20 h=60	1200.00	1000.00	1000.00	1.264e+05	4.000e+04	3.600e+05	4000.00	1.200e+04	6000.00	1.800e+04
4		500.00	0.0	0.0	9852.08	5.417e+04	4.167e+04	2166.67	2083.33	3750.00	3750.00
5		450.00	0.0	0.0	8185.42	5.375e+04	2.455e+04	2150.00	1448.77	3625.00	2612.50
6	IPE 140 - sbalzo	16.40	0.0	0.0	2.40	45.00	541.00	12.30	77.30	19.20	88.30
7	Architrave P1 finestre 307-Rettangolare: b=25 h=63	1575.00	1312.50	1312.50	2.461e+05	8.203e+04	5.209e+05	6562.50	1.654e+04	9843.75	2.481e+04
8	Architrave P1 finestre 297-Rettangolare: b=25 h=73	1825.00	1520.83	1520.83	2.982e+05	9.505e+04	8.105e+05	7604.17	2.220e+04	1.141e+04	3.331e+04
9	Architrave P1 finestre- Rettangolare: b=25 h=80	2000.00	1666.67	1666.67	3.346e+05	1.042e+05	1.067e+06	8333.33	2.667e+04	1.250e+04	4.000e+04
10	Architrave P1 porte- Rettangolare: b=15 h=40	600.00	500.00	500.00	3.437e+04	1.125e+04	8.000e+04	1500.00	4000.00	2250.00	6000.00
11		880.00	733.33	733.33	8.373e+04	2.933e+04	1.420e+05	2933.33	6453.33	4400.00	9680.00
12	Architrave COP finestre 307-Rettangolare: b=25 h=60	1500.00	1250.00	1250.00	2.305e+05	7.813e+04	4.500e+05	6250.00	1.500e+04	9375.00	2.250e+04
13		4575.00	3812.50	3812.50	8.711e+05	2.383e+05	1.277e+07	1.906e+04	1.395e+05	2.859e+04	2.093e+05
14		3050.00	2541.67	2541.67	5.534e+05	1.589e+05	3.783e+06	1.271e+04	6.202e+04	1.906e+04	9.303e+04
15	Architrave ingresso- Rettangolare: b=20 h=64	1280.00	1066.67	1066.67	1.371e+05	4.267e+04	4.369e+05	4266.67	1.365e+04	6400.00	2.048e+04
16		2000.00	1666.67	1666.67	2.331e+05	6.667e+04	1.667e+06	6666.67	3.333e+04	1.000e+04	5.000e+04
17	pilastri-Rettangolare: b=20 h=60	1200.00	1000.00	1000.00	1.264e+05	4.000e+04	3.600e+05	4000.00	1.200e+04	6000.00	1.800e+04
18		2100.00	1750.00	1750.00	5.424e+05	6.300e+05	2.144e+05	2.100e+04	1.225e+04	3.150e+04	1.838e+04
19	trave copertura ingresso- Rettangolare: b=30 h=90	2700.00	2250.00	2250.00	6.399e+05	2.025e+05	1.823e+06	1.350e+04	4.050e+04	2.025e+04	6.075e+04
20		800.00	666.67	666.67	7.307e+04	1.067e+05	2.667e+04	5333.33	2666.67	8000.00	4000.00
21	fondazione-T rovescia: bi=120 ht=120 bs=50 hi=40	8800.00	0.0	0.0	5.710e+06	6.593e+06	1.063e+07	1.099e+05	1.461e+05	1.940e+05	2.547e+05
22	fondazione ascensore-T rovescia: bi=120 ht=120 bs=30 hi=40	7200.00	0.0	0.0	2.932e+06	5.940e+06	7.680e+06	9.900e+04	9.600e+04	1.620e+05	1.800e+05
23	terra-T ribassata: bi=11 ht=32 bs=40 hs=4			0.0	1.192e+04				2428.99	2447.00	4134.18
24	rompitratta-Rettangolare: b=60 h=45										
25	pilastrini mensa- Rettangolare: b=20 h=28	560.00	466.67	466.67	4.187e+04	1.867e+04	3.659e+04	1866.67	2613.33	2800.00	3920.00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

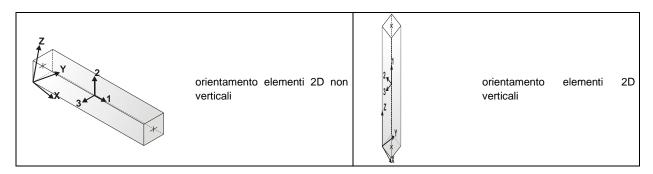
Documento:						
C51D_SR1A						
Rev. Data						
A Ottobre 2020						
Pag. 26 di 86						

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
27	fondazione ascensore 2-	8000.00	0.0	0.0	4.045e+06	6.187e+06	9.259e+06	1.031e+05	1.218e+05	1.760e+05	2.187e+05
	T rovescia: bi=120										
	ht=120 bs=40 hi=40										
28	fondazione filo 15-T	9600.00	0.0	0.0	6.137e+06	9.980e+06	1.128e+07	1.426e+05	1.504e+05	2.460e+05	2.674e+05
	rovescia: bi=140 ht=120										
	bs=50 hi=40										

13_MOD_SEZIONI

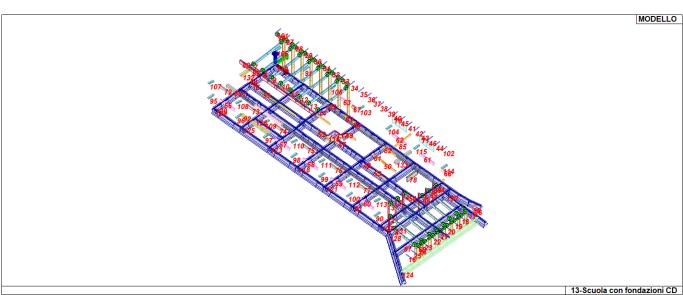
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A


Documento:				
C51D_SR1A				
Rev. Data				
A Ottobre 2020				
Pag. 27 di 86				

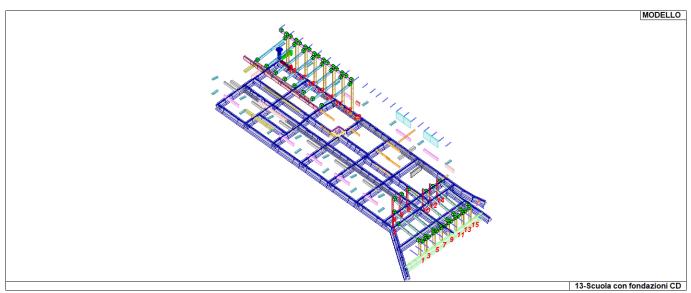
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE TABELLA DATI TRAVI

Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.


Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:


artioolare per ogrir e	icine no viene indicato in tabella.
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev. Data				
Α	Ottobre 2020			
Pag. 28 di 86				

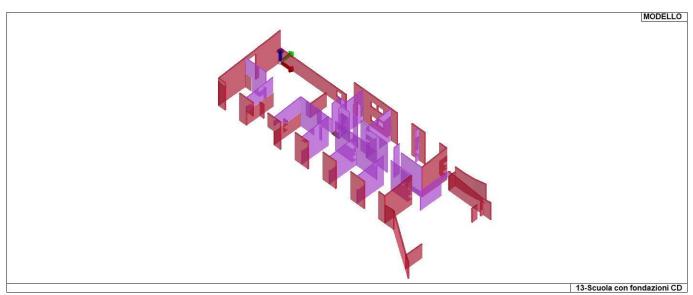
15_MOD_NUMERAZIONE_D2_PILASTRATE

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:							
C51D_SR1A							
Rev.	Rev. Data						
A Ottobre 2020							
Pag. 29 di 86							

MODELLAZIONE STRUTTURA: ELEMENTI SHELL LEGENDA TABELLA DATI SHELL


Il programma utilizza per la modellazione elementi a tre o quattro nodi denominati in generale shell.

Ogni elemento shell è individuato dai nodi I, J, K, L (L=I per gli elementi a tre nodi).

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento							
Note	codice di comportamento:							
	Guscio (elemento guscio in elevazione non verticale)							
	Guscio fond. (elemento guscio su suolo elastico)							
	Setto (elemento guscio in elevazione verticale)							
	Membrana (elemento guscio con comportamento membranale)							
Nodo I (J, K, L)	numero del nodo I (J, K, L)							
Mat.	codice del materiale assegnato all'elemento							
Spessore	spessore dell'elemento (costante)							
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico							
	verticale							
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico							
	orizzontale							

16_MOD_SPESSORI_D3

Rosso = spessore 25 cm pareti esterne

Viola = spessore 15 cm pareti interne

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:							
C51D_SR1A							
Rev.	Rev. Data						
A Ottobre 2020							
Pag. 30 di 86							

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

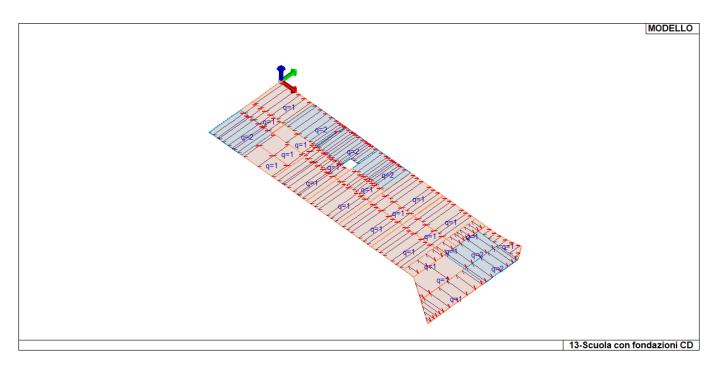
L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

Id.Arch.	Identificativo dell' archivio					
Tipo	Tipo di carico					
	Variab. Carico variabile generico					
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)					
	Neve Carico di neve					
G1k	carico permanente (comprensivo del peso proprio)					
G2k	carico permanente non strutturale e non compiutamente definito					
Qk	carico variabile					
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."					
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul					
	capitolo "normativa di riferimento")					
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro					
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente					
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente					
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizione					
	delle masse sismiche					
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici					

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

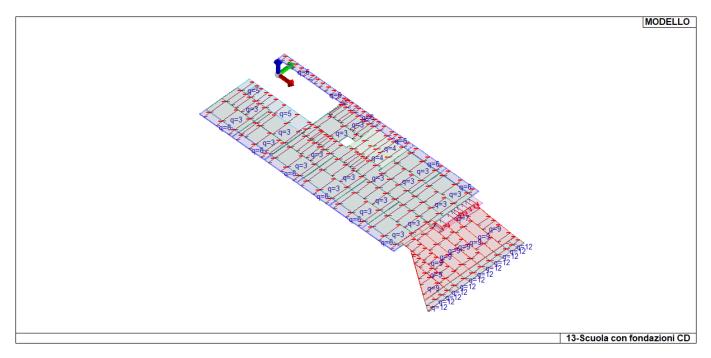

Elem	numero dell'elem	numero dell'elemento					
Tipo	codice di compor	tamento					
	S	elemento utilizzato solo per scarico					
	С	elemento utilizzato per scarico e per modellazione piano rigido					
	P	elemento utilizzato come pannello					
	M	scarico monodirezionale					
	В	scarico bidirezionale					
Id.Arch.	Identificativo dell	Identificativo dell' archivio					
Mat	codice del materi	codice del materiale assegnato all'elemento					
Spessore	spessore dell'ele	spessore dell'elemento (costante)					
Orditura	angolo (rispetto a	angolo (rispetto all'asse X) della direzione dei travetti principali					
Gk	carico permanen	carico permanente solaio (comprensivo del peso proprio)					
Qk	carico variabile s	carico variabile solaio					
Nodi	numero dei nodi	che definiscono l'elemento (5 per riga)					

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

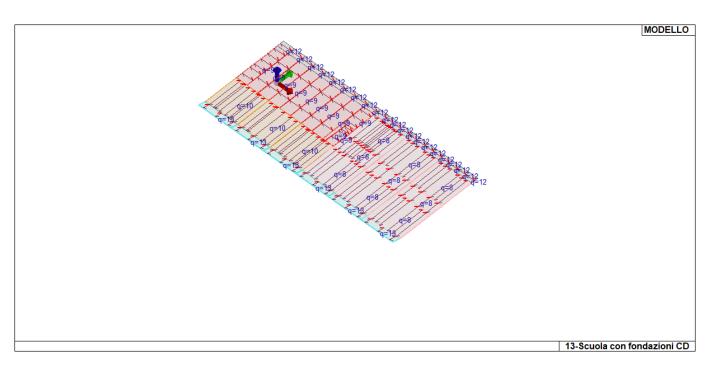
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 31 di 86						

ID Arch.	Tipo	G1k	G2k	Qk	Fatt. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	Fatt. Fi
	•	daN/ m2	daN/ m2	daN/ m2							
1	Variab.	420.00	153.00	300.00		1.00	0.70	0.70	0.60	0.60	1.00
2	Variab.	400.00	233.00	300.00		1.00	0.70	0.70	0.60	0.60	1.00
3	Variab.	518.00	177.00	300.00		1.00	0.70	0.70	0.60	0.60	1.00
4	Variab.	518.00	257.00	300.00		1.00	0.70	0.70	0.60	0.60	1.00
5	Variab.	143.00	177.00	300.00		1.00	0.70	0.70	0.60	0.60	1.00
6	Variab.	420.00	829.00	50.00		1.00	0.70	0.70	0.60	0.60	1.00
7	Variab.	518.00	145.00	400.00		1.00	0.70	0.70	0.60	0.60	1.00
8	Neve	438.00	100.00	90.00		1.00	0.50	0.20	0.0	0.0	1.00
9	Neve	63.00	65.00	90.00		1.00	0.50	0.20	0.0	0.0	1.00
10	Neve	438.00	65.00	90.00		1.00	0.50	0.20	0.0	0.0	1.00
12	Neve	21.00	40.00	90.00		1.00	0.50	0.20	0.0	0.0	1.00
13	Neve	420.00	20.00	90.00		1.00	0.50	0.20	0.0	0.0	1.00



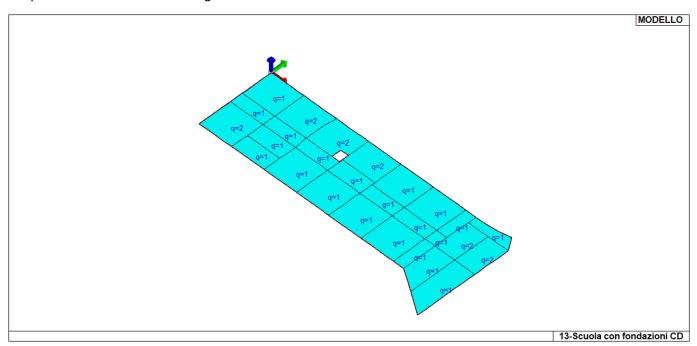
SOLAIO PIANO TERRA


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

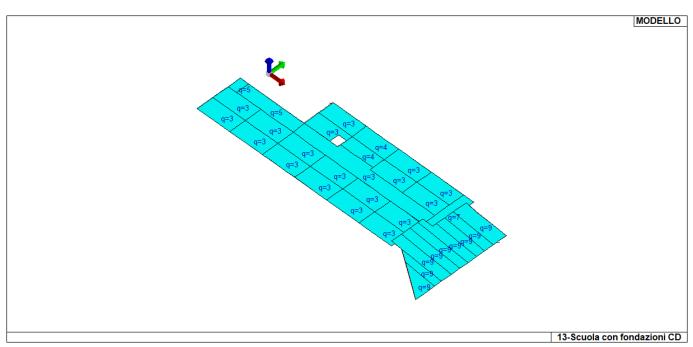
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:						
C51D_SR1A						
Rev.	Rev. Data					
A Ottobre 2020						
Pag. 32 di 86						

SOLAIO INTERPIANO


SOLAIO COPERTURA

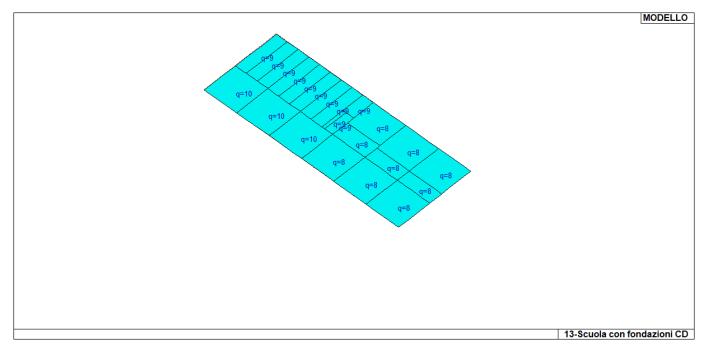
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:						
C51D_SR1A						
Rev.	Rev. Data					
Α	Ottobre 2020					
Pag. 33 di 86						

Si riportano le verifiche in forma grafica dei solai. Il celeste indica che il solaio è verificato.

SOLAIO PIANO TERRA



SOLAIO INTERPIANO

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 34 di 86					

SOLAIO COPERTURA

Elem.		f ist 0.11	f infi 0.27	Momento -3.127e+05 2.456e+05	Af inf. Af. 2.25	•	N/M 0.99		Taglio 2427.64 755.15	Af V 0.0	verif. V 1.00	
Elem.	rRfck 0.77	rFfck 0.68		rRfyk 0.99	rFfyk 0.89	rPf y 0.8		wR 0.27	wF 0.24		wP 0.19	
Elem.		f ist	t f infi 3-2.24e-03		Momento -749.64 294.05	-12.8	7	V. 128 0.22	V. 545	V. 129 3.88e-03		V. 131 0.33

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 35 di 86		

SCHEMATIZZAZIONE DEI CASI DI CARICO

Per quanto riguarda l'analisi dei carichi utilizzata nella progettazione si rimanda all'Allegato 1 della relazione, in cui vengono studiati i singoli solai, evidenziando per ciascuno i carichi permanenti strutturali (G1, con coefficiente di sicurezza 1.3), carichi permanenti non strutturali (G2, con coefficiente di sicurezza 1.5) e carichi accidentali (Q, con coefficiente di sicurezza 1.5

In particolare si distinguono:

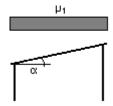
- Solaio piano terra (ST): solaio in latero cemento tipo bisap o equivalente
- Solai interpiano (SI): solai in x-lam o alleggeriti
- Solaio di copertura (SC): solai in x-lam o alleggeriti
- Azioni di neve e vento

NEVE:

Zona Neve = II

Periodo di ritorno, Tr = 50 anni

Ctr = 1 per Tr = 50 anni


Ce (coeff. di esposizione al vento) = 1,00

Valore caratteristico del carico al suolo = qsk Ce Ctr = 100 daN/mq

Copertura ad una falda:

Angolo di inclinazione della falda α = 5,0° μ 1 = 0,80 => Q1 = 80 daN/mg

Schema di carico:

VENTO:

Zona vento = 3 Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I) Altitudine base della zona, Ao = 500 m (Tab. 3.3.I) Altitudine del sito, As = 28 m Velocità di riferimento, Vb = 27,00 m/s (Vb = Vb.o per As \leq Ao) Periodo di ritorno, Tr = 50 anni Cr = 1 per Tr = 50 anni Velocità riferita al periodo di ritorno di progetto, Vr = Vb Cr = 27,00 m/s

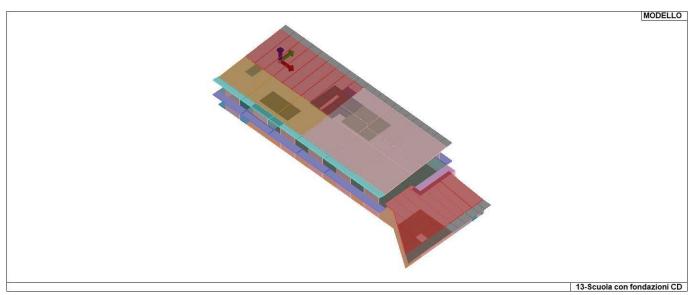
Classe di rugosità del terreno: B

[Aree urbane (non di classe A), suburbane, industriali e boschive]

Esposizione: Cat. IV - Entroterra fino a 500 m di altitudine (Kr = 0,22; Zo = 0,30 m; Zmin = 8 m) Pressione cinetica di riferimento, qb = 46 daN/mq

Coefficiente di forma, Cp = 1,00 Coefficiente dinamico, Cd = 1,00 Coefficiente di esposizione, Ce = 1,78 Coefficiente di esposizione topografica, Ct = 1,00 Altezza dell'edificio, h = 10,00 m

Pressione del vento, p = qb Ce Cp Cd = 81 daN/mq


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:	
C51D_SR1A	
Rev. Data	
Α	Ottobre 2020
Pag. 36 di 86	

Tipo carico di pressione uniforme su piastra

ld	Tipo	pressione
		daN/ m2
7	QVK PAN ++ vento*0.4 (da personalizzare)-P3:p= 3.240e-03	32.40
8	QVK PAN vento*0.4 (da personalizzare)-P3:p= 3.240e-03	32.40

21_CAR_CARICHI_SOLAI

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_S	C51D_SR1A	
Rev.	Data	
Α	Ottobre 2020	
Pag. 37 di 86		

SCHEMATIZZAZIONE DEI CASI DI CARICO LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i sequenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione	
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura	
2	Gk	NA	caso di carico con azioni permanenti	
3	Qk	NA	caso di carico con azioni variabili	
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture	
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai	
6	Qnk	Α	aso di carico comprensivo dei carichi di neve sulle coperture	
7	Qtk	SA	aso di carico comprensivo di una variazione termica agente sulla struttura	
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura	
9	Esk	SA	caso di carico sismico con analisi statica equivalente	
10	Edk	SA	caso di carico sismico con analisi dinamica	
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica	
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni	

Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di tipo semi-automatico SA (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

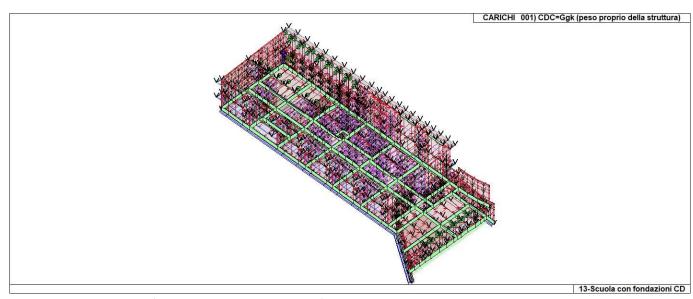
7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo non automatico NA ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

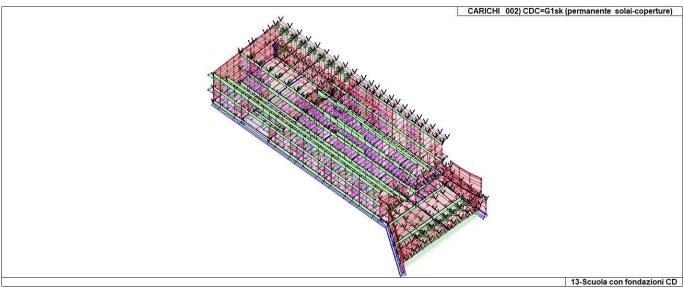
In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

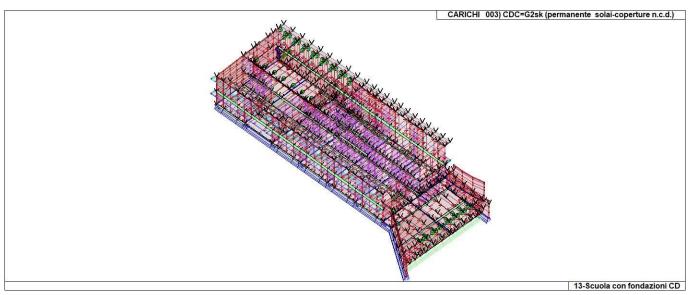

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Gsk	CDC=G2pk (permanente pannelli n.c.d.)	
5	Qsk	CDC=Qsk (variabile solai)	
6	Qnk	CDC=Qnk (carico da neve)	
7	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=G2pk (permanente pannelli n.c.d.)
			partecipazione:1.00 per 5 CDC=Qsk (variabile solai)
			partecipazione:1.00 per 6 CDC=Qnk (carico da neve)
8	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
13	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
14	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

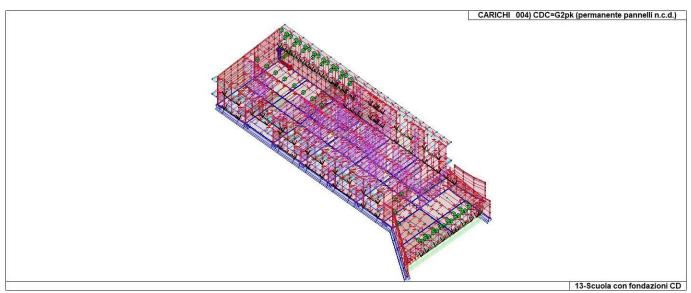
Documento:	
C51D_SR1A	
Rev. Data	
Α	Ottobre 2020
Pag. 38 di 86	

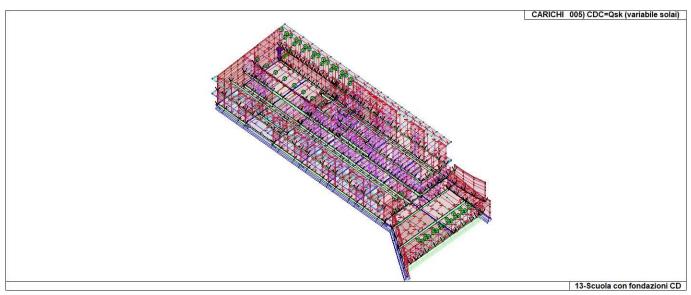

CDC	Tipo	Sigla Id	Note
15	Edk	CDC=Ed (dinamico SLO) alfa=0.0 (ecc. +)	come precedente CDC sismico
16	Edk	CDC=Ed (dinamico SLO) alfa=0.0 (ecc)	come precedente CDC sismico
17	Edk	CDC=Ed (dinamico SLO) alfa=90.00 (ecc. +)	come precedente CDC sismico
18	Edk	CDC=Ed (dinamico SLO) alfa=90.00 (ecc)	come precedente CDC sismico
19	Qvk	CDC=Qvk (carico da vento) dir X +	Azioni applicate: p= 3.240e-03
20	Qvk	CDC=Qvk (carico da vento) dir X -	Azioni applicate: p= 3.240e-03
21	Qvk	CDC=Qvk (carico da vento) dir Y +	Azioni applicate: p= 3.240e-03
22	Qvk	CDC=Qvk (carico da vento) dir Y -	Azioni applicate: p= 3.240e-03


22_CDC_001_CDC=Ggk (peso proprio della struttura)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Docume	Documento:	
C51D_SR1A		
Rev.	Data	
Δ	Ottobre 2020	
A	Ollobie 2020	
P	Pag. 39 di 86	

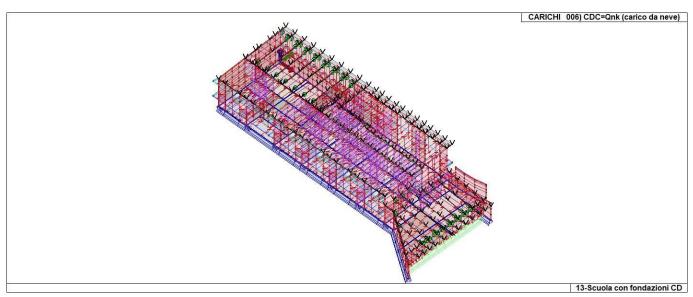

22_CDC_002_CDC=G1sk (permanente solai-coperture)


22_CDC_003_CDC=G2sk (permanente solai-coperture n.c.d.)

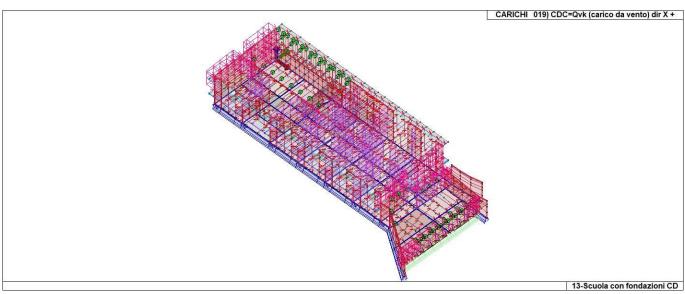
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 40 di 86		

22_CDC_004_CDC=G2pk (permanente pannelli n.c.d.)

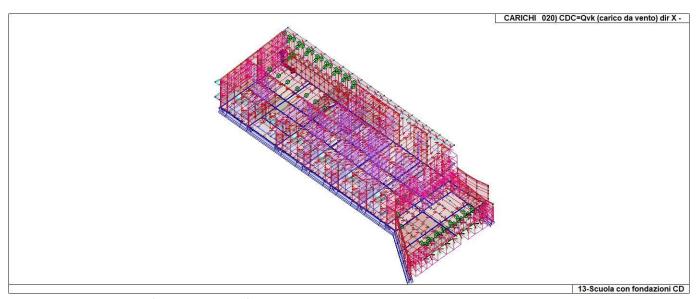


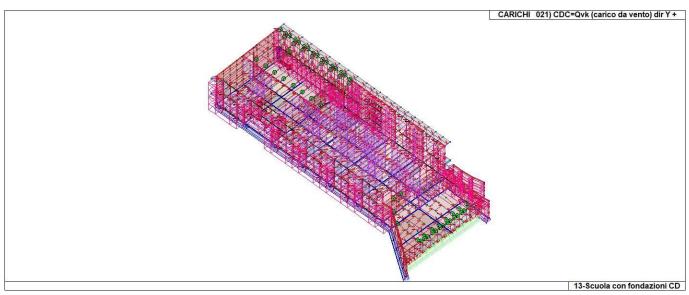
22_CDC_005_CDC=Qsk (variabile solai)


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

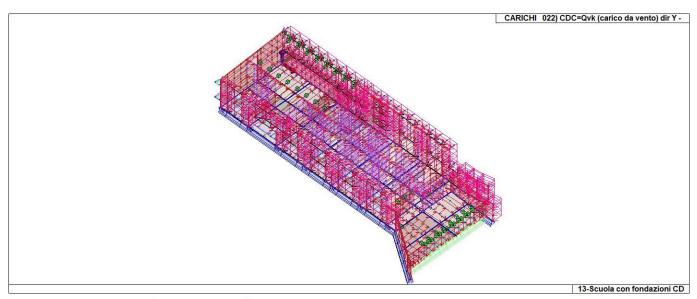
Documento:	
C51D_SR1A	
Rev. Data	
Α	Ottobre 2020
Pag. 41 di 86	


22_CDC_006_CDC=Qnk (carico da neve)


22_CDC_019_CDC=Qvk (carico da vento) dir X +

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:	
C51D_SR1A	
Rev. Data	
Α	Ottobre 2020
Pag. 42 di 86	


22_CDC_020_CDC=Qvk (carico da vento) dir X -

22_CDC_021_CDC=Qvk (carico da vento) dir Y +

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 43 di 86					

22_CDC_022_CDC=Qvk (carico da vento) dir Y -

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:			
C51D_SR1A			
Rev. Data			
Α	Ottobre 2020		
Р	ag. 44 di 86		

DEFINIZIONE DELLE COMBINAZIONI LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$

Combinazione frequente SLE

 $G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G_1 + G_2 + A_d + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti non strutturali	Favorevoli	γG2	0,8	0,8	0,8
(Non compiutamente definiti)	Sfavorevoli		1,5	1,5	1,3
Carichi variabili	Favorevoli	γQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:			
C51D_SR1A			
Rev. Data			
Α	Ottobre 2020		
Pag. 45 di 86			

In totale si hanno 281 combinazioni così suddivise:

- 144 combinazioni SLU
- 31 combinazioni SLU (SLV sisma)
- 31 combinazioni SLE (SLD sisma)
- 31 combinazioni SLE (SLD sisma)
- 2 combinazioni SLU (accidentali)
- 55 combinazioni SLE (rara)
- 13 combinazioni SLE (frequenti)
- 2 combinazioni SLE (permanenti)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

_					
	Documento:				
	C51D_SR1A				
	Rev. Data				
A Ottobre 2020					
	Pag. 46 di 86				

AZIONE SISMICA VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell'allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri della struttura						
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica	
IV	100.0	2.0	200.0	С	T1	

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _c *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev. Data				
Α	Ottobre 2020			
Pag. 47 di 86				

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	10.947	43.719	
20276	10.931	43.707	1.847
20277	11.000	43.708	4.417
20055	10.998	43.758	5.946
20054	10.929	43.757	4.451

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	120.0	0.072	2.596	0.277
SLD	63.0	201.0	0.087	2.578	0.285
SLV	10.0	1898.0	0.193	2.406	0.302
SLC	5.0	2475.0	0.209	2.407	0.305

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.072	1.500	2.596	0.942	0.148	0.444	1.889
SLD	0.087	1.500	2.578	1.025	0.151	0.453	1.947
SLV	0.193	1.421	2.406	1.428	0.157	0.471	2.373
SLC	0.209	1.398	2.407	1.487	0.158	0.474	2.437

01_INT_SPETTRI_ELASTICI_O

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 48 di 86		

RISULTATI ANALISI SISMICHE LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Calcolo dei fattori di comportamento secondo il D.M. 17/01/2018

La costruzione, nuova, è caratterizzata da non regolarità sia in pianta sia in altezza ed è progettata considerando un comportamento non dissipativo (ND).

Parametri fattore in direzione x e y

Fattori di comportamento utilizzati

	Dissipativi	Non dissipativi
q SLU x	1.000	1.000
q SLU y	1.000	1.000
q SLU z	1.500	1.500

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 49 di 86		

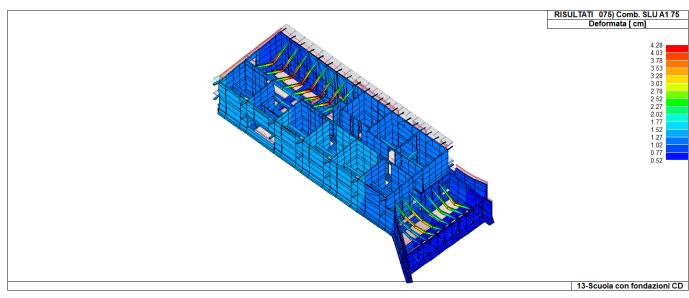
RISULTATI NODALI LEGENDA RISULTATI NODALI

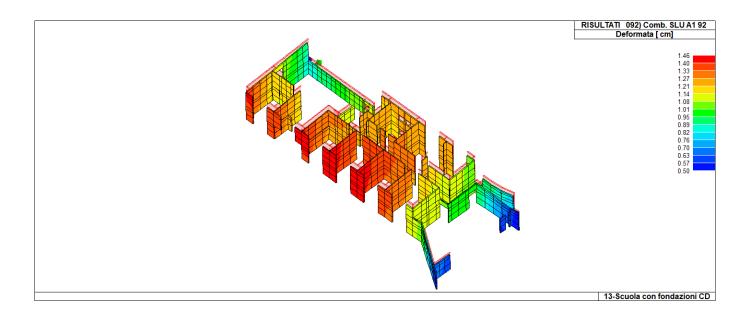
Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

Una seconda tabella riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

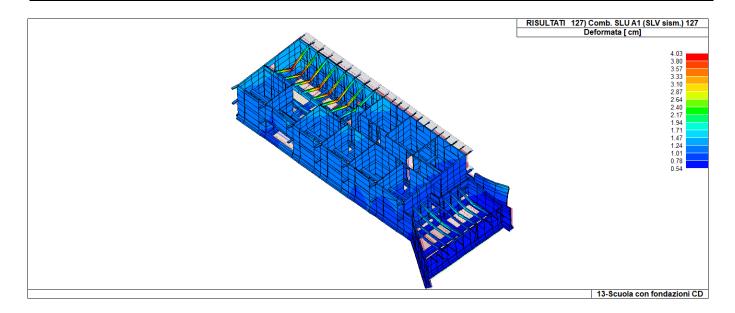
Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

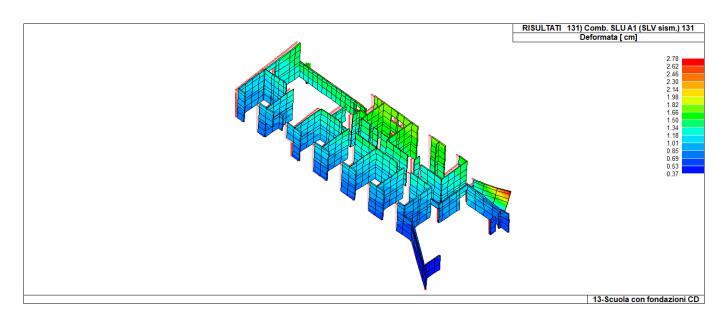

Nodo	Tra	-0.90 0.88	Traslazione Y -2.70 1.75	Traslazione Z -4.28 0.43	Rotazione X -0.02 0.02	Rotazione Y -0.03 0.03	Rotazione Z -2.59e-03 1.29e-03
Nodo	Cmb	Azione X daN	Azione Y daN	Azione Z daN	Azione RX daN cm	Azione RY daN cm	Azione RZ daN cm
Nodo		Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
Nodo	Cmb	Azione X daN	Azione Y daN	Azione Z daN	Azione RX daN cm	Azione RY daN cm	Azione RZ daN cm


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

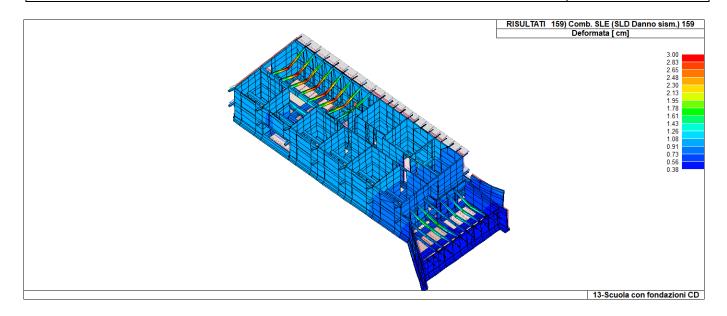
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

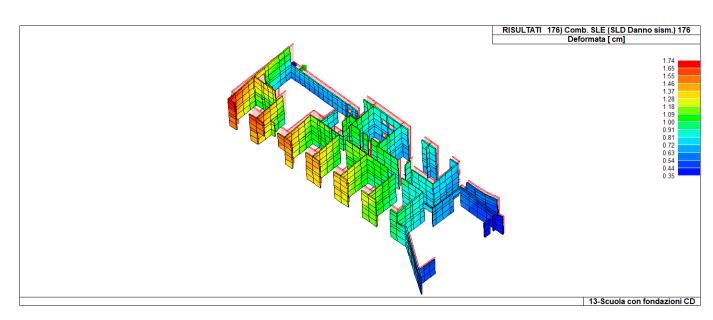
Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 50 di 86		


Si riportano graficamente le deformate delle combinazioni più significative.

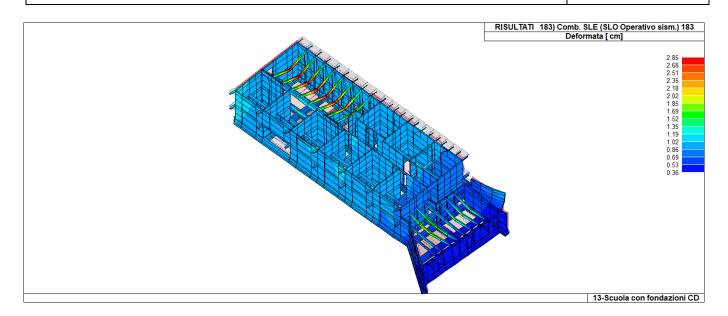


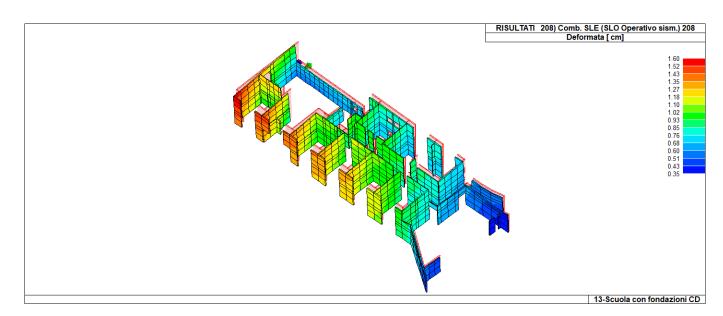
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 51 di 86		

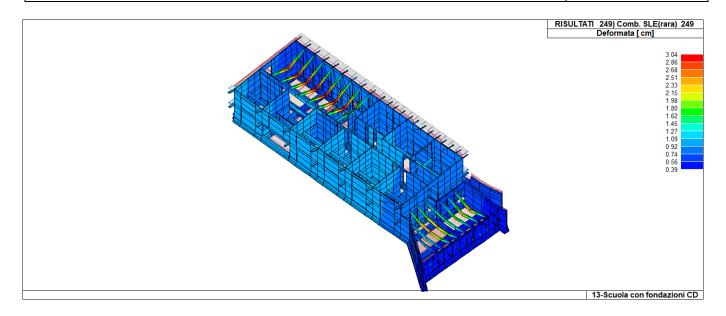


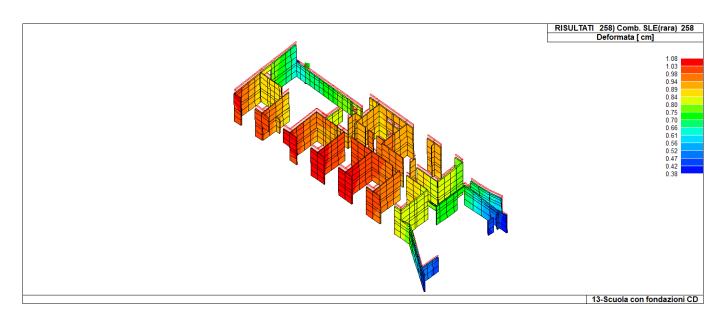
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 52 di 86		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:			
C51D_SR1A			
Rev. Data			
Α	Ottobre 2020		
Pag. 53 di 86			



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 54 di 86		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

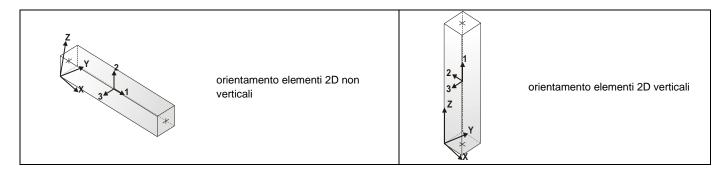
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 55 di 86		

RISULTATI ELEMENTI TIPO TRAVE LEGENDA RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione


Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

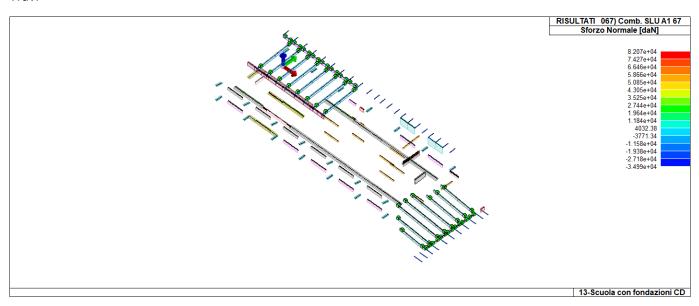
Per gli elementi tipo pilastro sono riportati in tabella i seguenti valori:

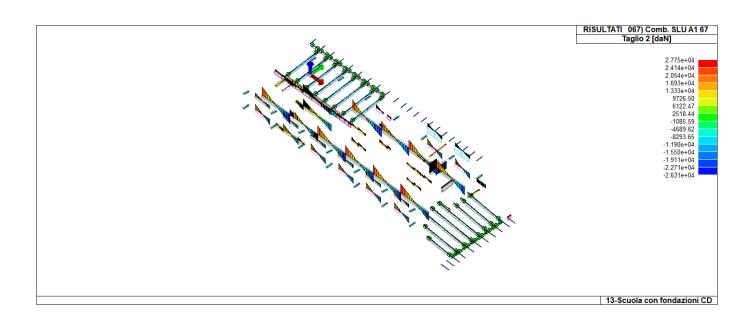
Pilas.	numero dell'elemento pilastro	
Cmb	combinazione in cui si verificano i valori riportati	
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)	
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)	
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)	
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)	
Pos.	ascissa del punto iniziale e finale dell'elemento	
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento	

Per gli elementi tipo trave in elevazione sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

Per gli elementi tipo trave in fondazione (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

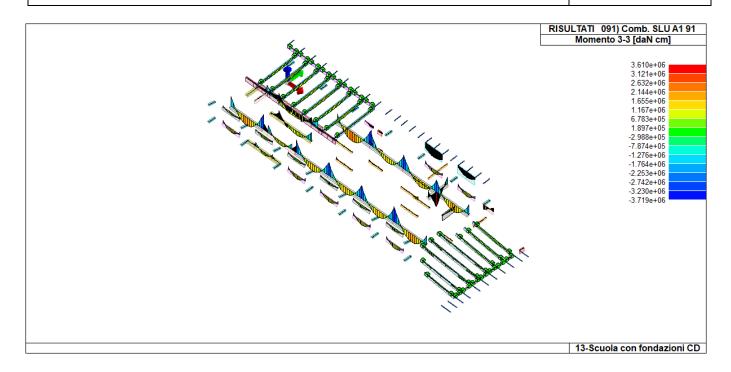
Pilas.	M3 mx/mn M2 mx/mn -1.978e+05 -9.356e+04	D 2 / D 3 -0.44	Q 2 / Q 3 0.0	N -1.778e+04	V 2 -577.77	V 3 -1245.92	T -1358.18
	1.816e+05 1.044e+05	0.65	0.0	6959.84	818.61	1441.15	1422.22
Trave	M3 mx/mn M2 mx/mn -3.834e+06-3.419e+05		Q 2 / Q 3 4.944e+04	N -8.304e+04 -2	V 2	V 3 -2690.09 -	T 2.124e+05
	4.177e+06 5.049e+05	3.22	1818.88	8.871e+04 2	.821e+04	2991.14	2.493e+05

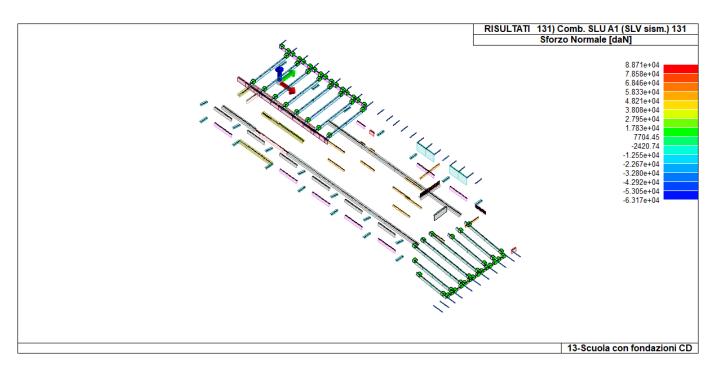

Si riportano di seguito in forma grafica le ssollecitazioni massime registrate agli SLU e SLV.


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

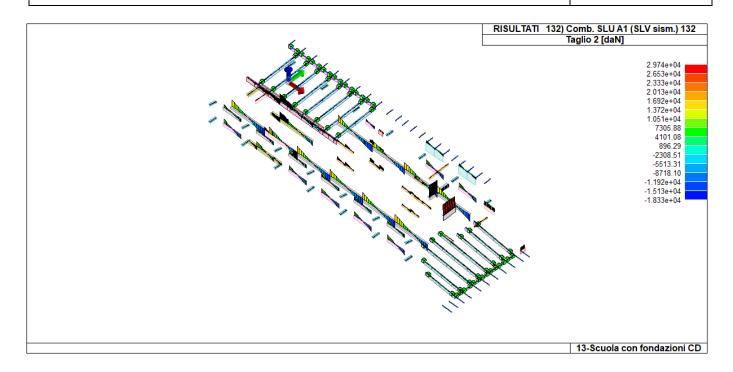
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

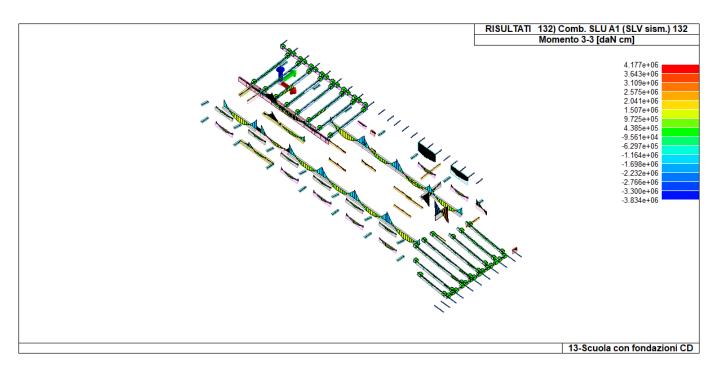
Documento:		
C51D_SR1A		
Rev.	Rev. Data	
Α	Ottobre 2020	
Pag. 56 di 86		


Travi



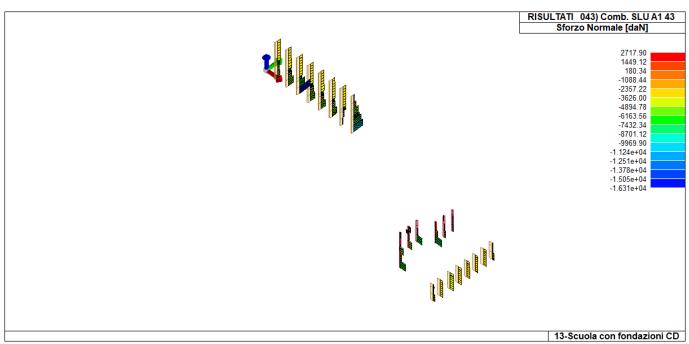
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

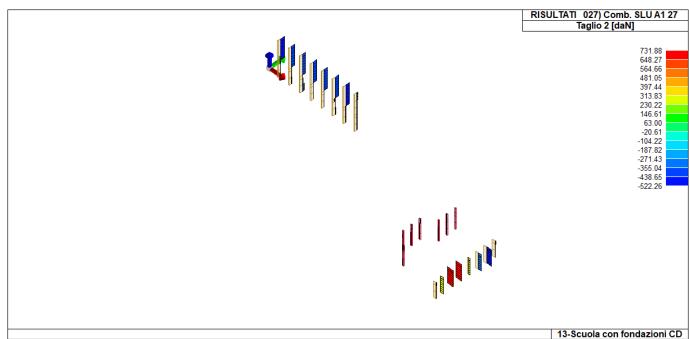

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

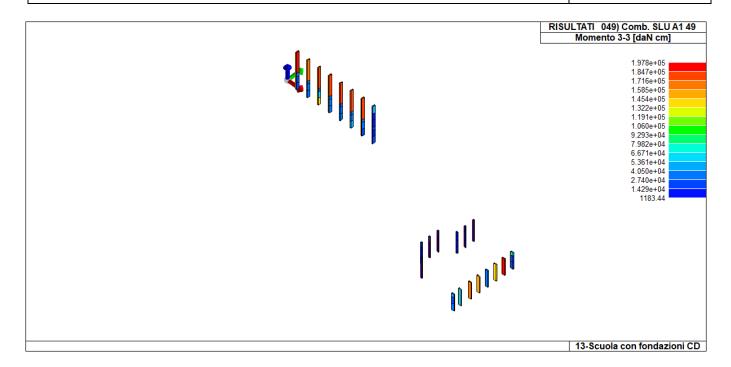
Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 58 di 86		

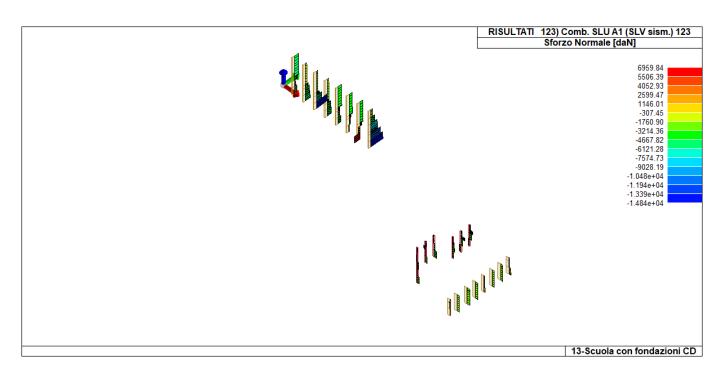



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

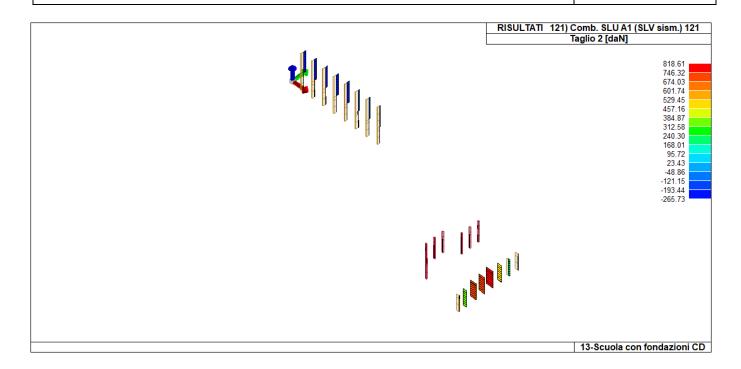
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

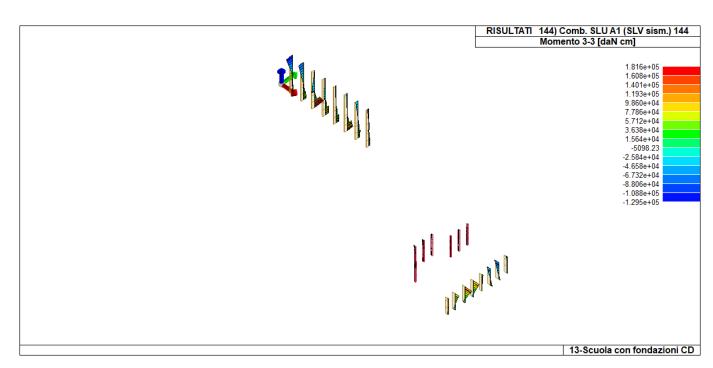
Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 59 di 86		


Pilastri



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 60 di 86		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 61 di 86		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:			
C51D_SR1A			
Rev. Data			
A Ottobre 2020			
Pag. 62 di 86			

RISULTATI ELEMENTI TIPO SHELL LEGENDA RISULTATI ELEMENTI TIPO SHELL

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo shell, è possibile in relazione alle tabelle sottoriportate. Per ogni elemento, e per ogni combinazione(o caso di carico) vengono riportati i risultati più significativi.

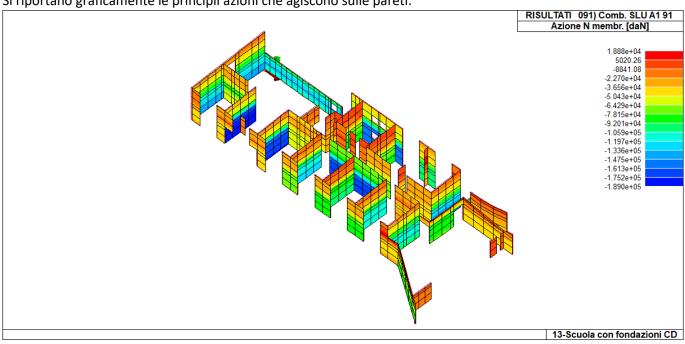
In particolare vengono riportati in ogni nodo di un elemento per ogni combinazione:

tensione di \	/on Mises	(valore riassuntivo del complessivo stato di sollecitazione)
N max		sforzo membranale principale massimo
N min		sforzo membranale principale minimo
M max		sforzo flessionale principale massimo
M min		sforzo flessionale principale minimo
N1	N2	sforzi membranali e flessionali in direzione locale 1 e 2 dell'elemento (lo sforzo 2-1 è
N1-2	M1	uguale allo sforzo 1-2 per la reciprocità delle tensioni tangenziali)
M2	M1-2	

I suddetti risultati possono a scelta del progettista essere preceduti o sostituiti da valori di sollecitazione non più riferiti al sistema locale dell'elemento ma al sistema globale.

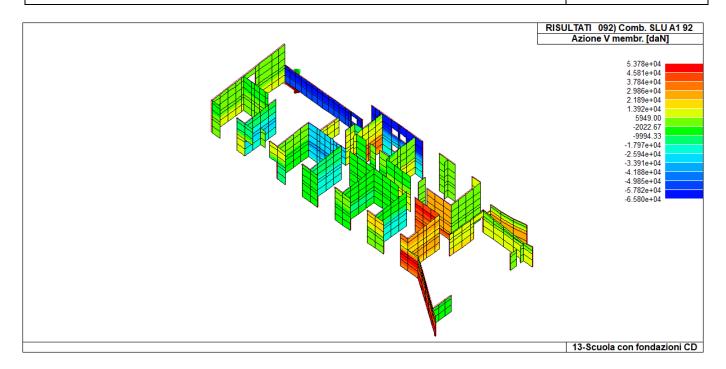
In questo caso gli elementi vengono raggruppati in gruppi (M_S: macro gusci o macro setti, raggruppati per materiale, spessore, e posizione fisica) per la valutazione dei valori mediati ai nodi appartenenti agli elementi dei gruppi stessi.

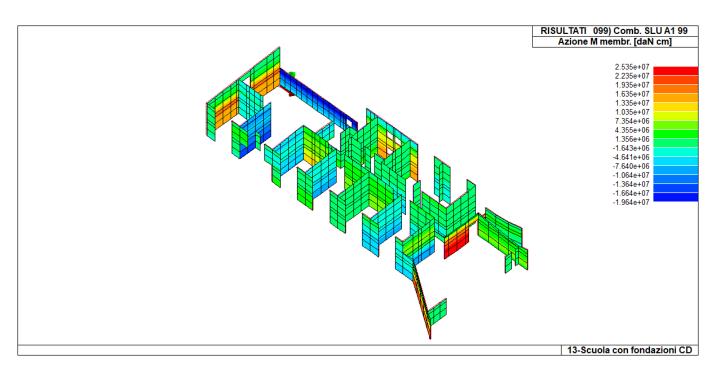
I valori di sollecitazione sono, in questo caso, riferiti ad una terna specifica del gruppo ruotata di αο attorno all'asse Z per i gusci e ruotata di αν attorno alla normale (che per definizione è orizzontale) al piano del setto.


Per i setti, in particolare, se α_V è zero, l'asse '1-1 rappresenta la verticale e l'asse '2-2 l'orizzontale contenuta nel setto.

Le azioni sui setti possono essere espresse anche con formato macro, cioè riferite all'intero macroelemento.

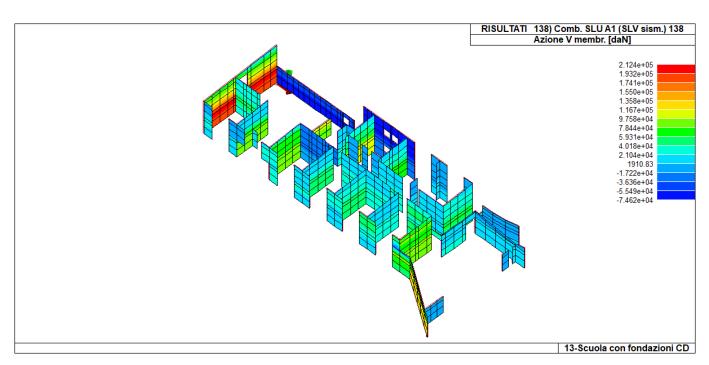
In particolare vengono riportati per ogni quota Z dei nodi e per ogni combinazione i seguenti valori:


N memb.	Azione membranale complessiva agente sulla parete in direzione Z
V memb.	Azione complessiva di taglio agente nel piano del macroelemento
V orto	Azione complessiva di taglio agente in direzione perpendicolare al macroelemento
M memb.	Azione flessionale complessiva agente nel piano del macroelemento
M orto	Azione flessionale complessiva agente in direzione perpendicolare al macroelemento
Т	Azione torsionale complessiva agente nel piano orizzontale

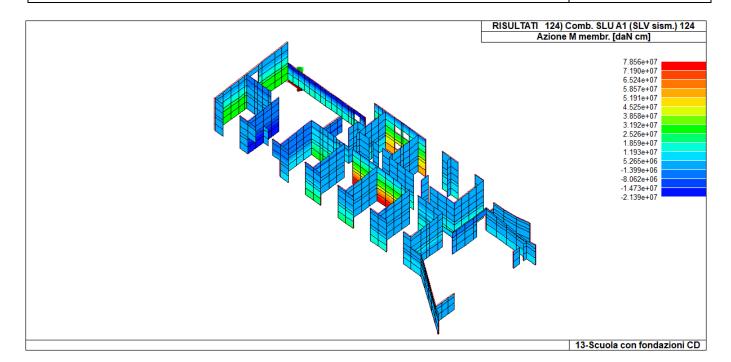

Si riportano graficamente le principli azioni che agiscono sulle pareti.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 63 di 86		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 64 di 86		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 65 di 86		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 66 di 86				

VERIFICHE PER ELEMENTI IN ACCIAIO LEGENDA TABELLA VERIFICHE PER ELEMENTI IN ACCIAIO

Il programma consente la verifica dei seguenti tipi di elementi:

1. **aste** 2. **travi** 3. **pilastri** L'esito delle verifiche è espresso con un codice come di seguito indicato

Ok: verifica con esito positivo

NV: verifica con esito negativo

Nr: verifica non richiesta.

Per comodità gli elementi vengono raggruppati in tabelle in relazione al tipo.

Le verifiche sono riportate in tabelle con il significato sotto indicato; le verifiche sono espresse dal rapporto tra l'azione di progetto e la capacità ultima, pertanto la verifica ha esito positivo per rapporti non superiori all'unità.

Asta	Trave		Pilasti	ro	numero dell'elemento				
Stato					codice di verifica per resistenza, stabilità, svergolamento				
Note					sezione e materiali adottati per l'elemento				
	۷N	ı			(ASTE) verifica come da par. 4.2.4.1.2 per punto (4.2.6) e (4.2.10)				
	V V/	Т			(TRAVI E PILASTRI) verifica di resistenza come da par. 4.2.4.1.2 per azioni taglio-torsione (4.2.16 e 4.2.28)				
	V N/	N.4			(TRAVI E PILASTRI) verifica di resistenza come da par. 4.2.4.1.2 per azioni composte (4.2.33) con riduzione				
	V IN/	IVI			per taglio (4.2.40) ove richiesto				
N M	//3 M2	V2	V3	T	sollecitazioni di interesse per la verifica				
	V sta	ab	•	•	(ASTE) verifica come da par. 4.2.4.1.3.1 per punto (4.2.41)				
	V sta	nh.			(TRAVI E PILASTRI) verifica come da par. 4.2.4.1.3 per punti (C4.2.32) o (C4.2.36) (membrature inflesse e				
	V Sta	טג			compresse senza/con presenza di instabilità flesso-torsionale)				
Betax	cL B2	2xL	B33	хL	lunghezze libere di inflessione (se indicato riferiti al piano di normale 22 o 33 rispettivamente)				
	Snelle	zza			snellezza massima				
	Class	se			classe del profilo				
	Chi n	nn			coefficiente di riduzione (della capacità) per la modalità di instabilità pertinente				
	Rif. cı	mb			combinazioni in cui si sono rispettivamente attinti i valori di verifica più elevati				
	V fls	st			(TRAVI E PILASTRI) verifica di stabilità come da par. 4.2.4.1.3.2 per punto (4.2.48)				
	B1-1	x L			Beta1-1 x L: interasse tra i ritegni torsionali				
	Chi l	_T			coefficiente di riduzione (della capacità) per la modalità di instabilità flesso-torsionale				
	Snell a	dim			Valore della snellezza adimensionale, utilizzato per il controllo previsto al par. 7.5.5				
	v.Om	Δα			Valore del rapporto capacità/domanda per l' azione di interesse (momento per travi e azione assiale per aste)				
	V.O	cg			utilizzato per l' amplificazione delle azioni				
	f.Om.	N			Fattore di amplificazione delle azioni assiali per travi e colonne (prodotto di 1.1 x Omega x gamma rd				
					materiale); utilizzato come specificato al par. 7.5.5				
	f.Om	т			Fattore di amplificazione delle azioni (assiali, flettenti e taglianti) per colonne (prodotto di 1.1 x Omega x				
			gamma rd materiale); utilizzato come specificato al par. 7.5.4						
V.7.5.4 M Ed			Verifica come prevista al punto 7.5.4 e valore dell' azione flettente						
V.7.5.5 N Ed			Verifica come prevista al punto 7.5.5 e valore dell' azione assiale						
V.7.5	.6 V Ed	,		1	Verifica come prevista al punto 7.5.6 e valore dei tagli dovuti ai carichi e alla capacità				
	V.7.5.10	V Ed	i		Verifica come prevista al punto 7.5.10 e valore dell' azione di taglio				
sovr. Xi (Xf, Yi, Yf)			Valore della sovraresistenza come prevista al par. 7.5.4.2 (i valori non sono normalizzati pertanto saranno						
			maggiori uguali a gamma rd in base alla classe di duttilità)						

Nel caso in cui lambdaS sia minore di 0.2, oppure nel caso in cui la sollecitazione di calcolo NEd sia inferiore a 0.04 Ncr, gli effetti legati ai fenomeni di instabilità sono trascurati, come da paragrafo 4.2.4.1.3.1

Trave	V V/T	/ V/T V N/M V		LamS 22LamS 33	Snell.	Snell. Chi mn		V flstLamS LT	
						0.27			0.76
	0.08	0.44	0.62	1.74 0.50	132.60		0.58	0.95	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 67 di 86				

STATI LIMITE D' ESERCIZIO ACCIAIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO ACCIAIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, per gli elementi trave, i risultati relativi alle combinazioni considerate (rare o caratteristiche).

I valori di interesse sono i seguenti:

f*1000/L massima deformazione normalizzata in combinazioni ra	re
---	----

Si precisa che i valori di massima deformazione per travi sono riferiti ai due piani locali (1-2 con momenti flettenti 3-3 e 1-3 con momenti flettenti 2-2). Il valore riportato (massimo) è espresso in 1000/L per rendere agevole il confronto di più valori e in particolare di più range di valori (ad esempio 2 rappresenta L/500, 4 L/250 e cosi via).

Trave	f*1000/L												
53	4.3	54	3.0	55	4.0	56	3.7	57	3.6	58	3.1	59	3.6
60	3.5	61	2.7	62	2.4	63	3.1	64	2.1	65	1.8	66	1.9
67	1.9	68	1.9	69	1.9	70	1.9	71	1.6	72	1.4	73	1.1
74	1.1	75	1.3	76	1.2	77	1.4	78	1.5	79	1.2	80	1.4
81	16	82	16	83	1.5	241	0.5	242	0.5				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

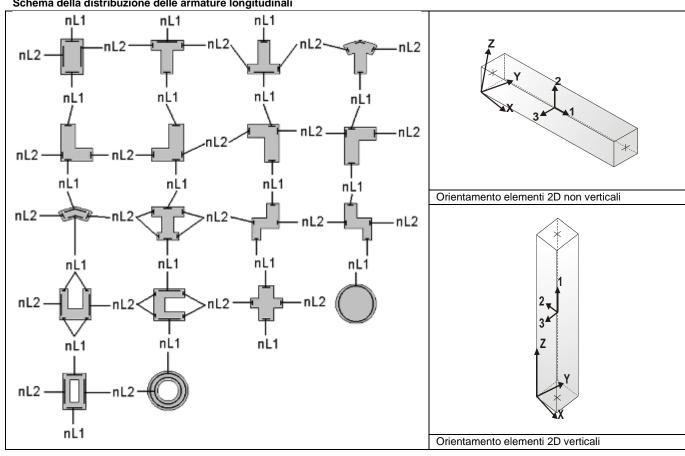
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 68 di 86				

VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.

Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.


Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (T.A.) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

Schema della distribuzione delle armature longitudinali

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 69 di 86				
	C51D_Si Rev.			

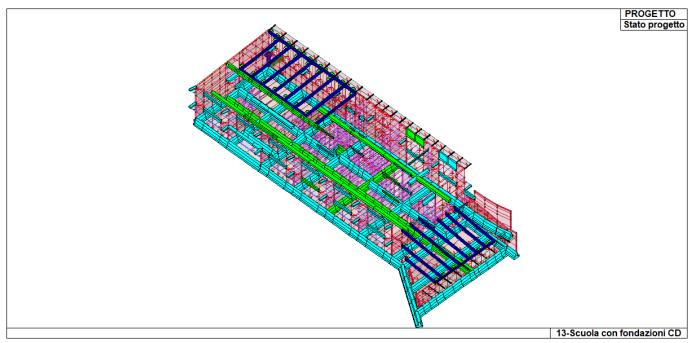
Simbologia adottata nelle tabelle di verifica

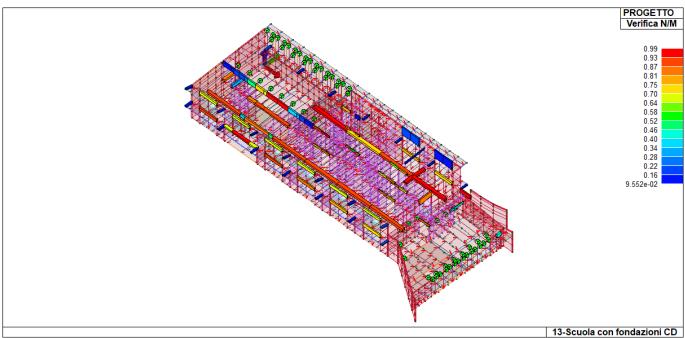
Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)	
Pilas. numero identificativo dell'elemento D2		
Note Codici identificativi delle sezione (s) e materiale (m) pilastro		
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte	
Quota	Quota sezione di verifica	
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo	
r. snell.	Rapporto di snellezza λ su λ^* : valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il	
	metodo diretto dello stato di equilibrio	
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2,	
	come da schemi in figura precedente	
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva	
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore	
	minore o uguale a 1 per verifica positiva	
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto	
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva	
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro	

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

M_T Z P P	Numero della travata (T), quota media (Z), nº pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)				
Trave numero identificativo dell'elemento D2					
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche				
	effettuate appresso descritte				
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo				
Af inf. Area di armatura longitudinale posta all'intradosso					
Af sup Area di armatura longitudinale posta all'estradosso					
Af long.	Area complessiva armatura longitudinale				
x/d	rapporto tra posizione dell'asse neutro e altezza utile				
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva				
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto				
V V/T cls Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva					
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave				

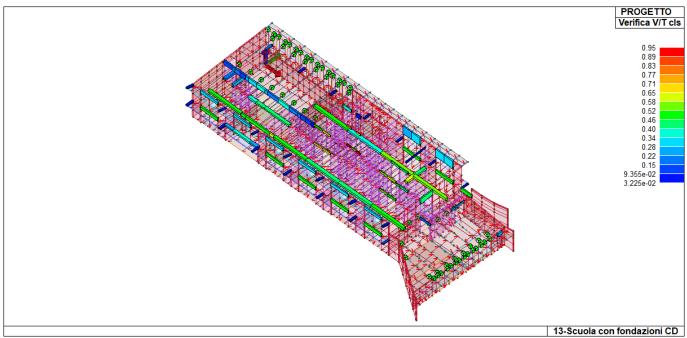

Di seguito si riporta graficamente lo stato di progetto degli elementi trave c.a., il colore celeste e verde indicano che l'elemento è verificato.

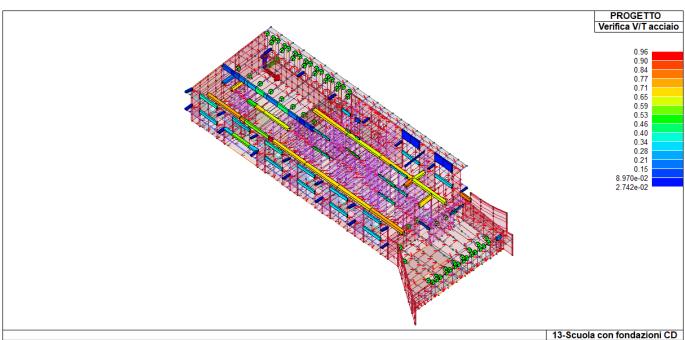

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 70 di 86				

Stato di progetto travi in c.a.





REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 71 di 86		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:			
	C51D SR1A		
CSTD_	٥.	KIA	
Rev.		Data	
A Ottobre 2020			
Pag. 72 di 86			

STATI LIMITE D' ESERCIZIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

- Combinazioni rare
- Combinazioni frequenti
- Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

i valon unin	teresse sono i seguenti.
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rar
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzat
	a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni qua
	permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dP	massimi in campata
setti e gusci	rRfck	rRfyk	rPfck	massimi nei nodi dell'elemento
	wR	wF	wP	massimi nei nodi dell'elemento

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Trave	rRfck	rRfyk	rPfck	wR	wF	wP	dR	dF	dP
							-2.81	-2.68	-2.58
	0.68	0.78	0.79	0.27	0.31	0.31	0.79	0.79	0.77

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 73 di 86		

VERIFICHE S.L. ELEMENTI IN LEGNO LEGENDA TABELLA VERIFICHE S.L. ELEMENTI IN LEGNO

Il programma consente la verifica dei seguenti tipi di elementi:

1. Aste

2. Travi

Pilastri

L'esito delle verifiche è espresso con un codice come di seguito indicato:

ok: verifica con esito positivoNV: verifica con esito negativo

Simbologia adottata nelle tabelle di verifica

Le verifiche effettuate ai sensi delle NTC 2018 sono dettagliatamente riportate come da tabella seguente:

re semiche en	ettuate ai serisi delle NTC 2016 sorio dettagliatamente riportate come da tabella seguente.
Elem.	Numero dell'elemento
Tipo	Codice di individuazione del tipo di elemento: Trave (T), Pilastro (P), Asta (A)
Stato	Codice della verifica: ok verificato, NV non verificato
Note	Numero della sezione (s) e del materiale (m) dell'archivio
Ver N+/M	Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6
Ver N-/M	Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6
Ver V/T	Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio
Ver N(s)	Verifica instabilità a compressione come da par. 4.4.8.2.2
Kcy(z)	Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa
Ver M(s)	Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z
Kcrit (y)/(z)	Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z
w,net R	Massima deformazione in combinazione rara (F frequente, P quasi permanente)
w,net Ri	Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito
kdef	Fattore di deformazione dell' elemento
Rif. cmb	Numero della combinazione in cui si è attinto il valore riportato per le verifiche

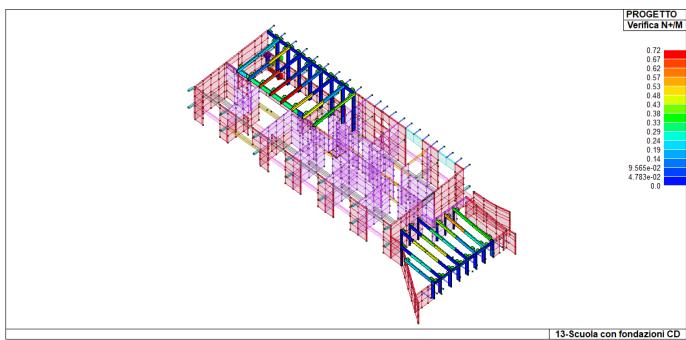
Le verifiche effettuate ai sensi dell'EC5 sono dettagliatamente riportate come da tabella seguente:

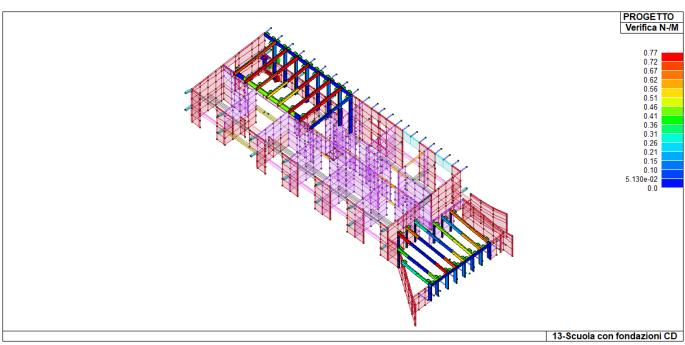
Elem.	Numero dell'elemento
Tipo	Codice di individuazione del tipo di elemento: Trave (T), Pilastro (P), Asta (A)
Stato	Codice della verifica ok verificato, NV non verificato
Note	Numero della sezione (s) e del materiale (m) dell'archivio
Ver N+/M	Verifica come da formula 6.17 e 6.18 per tensoflessione
Ver N-/M	Verifica come da formula 6.19 e 6.20 per pressoflessione
Ver V/T	Verifica come da formula 6.13 e 6.14 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio
Ver N(s)	Verifica come da formula 6.23 e 6.24 per pressoflessione di elementi con snellezza relativa in un piano maggiore di 0.3
Kcy (z)	Fattore di instabilità utilizzato nella formula 6.23 (6.24)
Ver M(s)	Verifica come da formula 6.35 (effettuata in entrambi i piani principali) per instabilità laterale
Kcrit (y) (z)	Fattore di instabilità laterale utilizzato nella formula 6.35 rispettivamente per la flessione y e z
w,net R	Massima deformazione in combinazione rara (F frequente, P quasi permanente)
w,net Ri	Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito
kdef	Fattore di deformazione dell' elemento
Rif. cmb	Numero della combinazione in cui si è attinto il valore riportato per le verifiche

Si sottolinea che le cinque verifiche sono espresse dal rapporto tra domanda e capacità, affinché la verifica sia positiva il rapporto deve essere inferiore o uguale a 1. La capacità è affetta dal termine **kmod**, espressione della classe di servizio e della durata dei carichi (si considera a livello di combinazione il caso di carico di minor durata).

Le deformazioni dell' elemento espresse in rapporto ad un millesimo di lunghezza sono rappresentate dal valore istantaneo e dal valore a tempo infinito. Il valore della deformazione a tempo infinito per una combinazione di carichi è ottenuta sommando per ogni caso di carico sia il valore istantaneo che il valore ottenuto dall' aliquota quasi-permanente amplificata del fattore kdef (formula 2.2 e 2.3).

In termini analitici il contributo del caso di carico con coefficiente di combinazione *Psi* (diverso da 0) è:

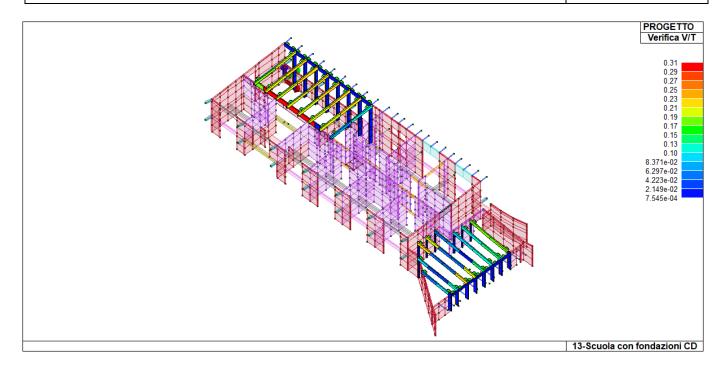

Psi + kdef × Psi2

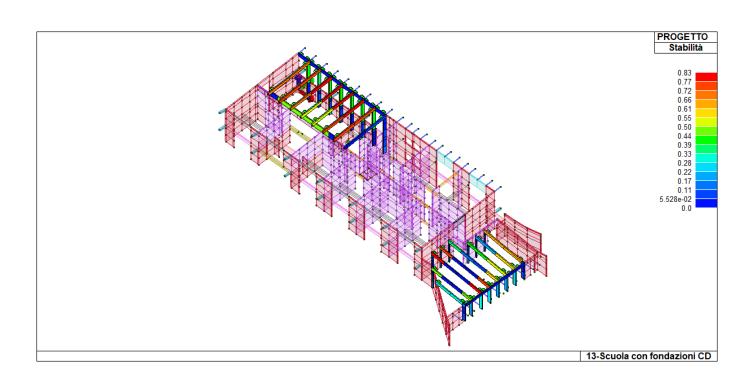

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 74 di 86		

Kcy 0.82 Kcz Ver M(s) Kcrit(y) Kcrit(z) 0.08 0.81 1.00 Elem. Ver N+/M Ver N-/M Ver V/T Ver N(s) 0.72 0.77 0.31 0.83 0.64 Elem. w,net R w,net F w,net P w,net Ri w,net Fi w,net Pi 3.08 8.50 5.56 4.71 3.40 7.18

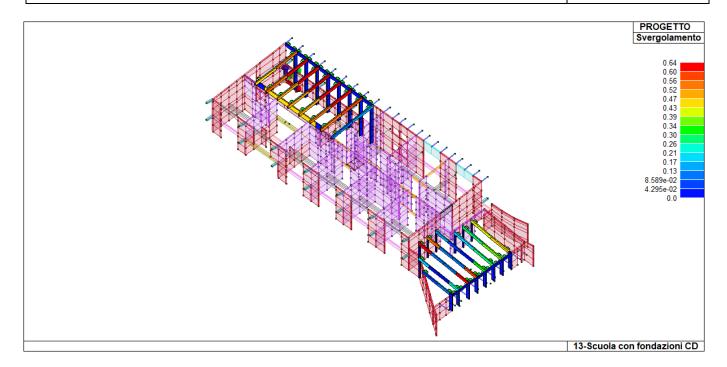




REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 75 di 86		





REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 76 di 86		

Si riporta la procedura di predimensionamento delle travi con le verifiche di deformabilità.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 77 di 86		

TRAVI MENSA

		Analisi dei car	ichi				
		Andria der Car	ioni				
Pesi Permanenti Strutturali						γ _{G1} =	1.3
Peso proprio trave						0,27	kN/m ²
G1						0,27	kN/m ²
G1 non compiutamenti definiti					041	0,00	kN/m²
Totale permanenti					G1k =	0,90	kN/m ²
Pesi Permanenti NON strutturali						γ _{G2} =	1,5
G2						0,65	kN/m ²
							kN/m ²
							kN/m²
otale permanenti					G2k =	0,65	kN/m ²
Carico accidentale	tab 3.1.II		tab 2. 5.I			γQ1=	1 5
	. Neve < 1000 m s.l.m	conerture speciali	Ψ0	Ψ1	Ψ2	701=	1,3
Cat.	. INEVE < 1000 III S.I.M.	coperture speciali		0,2			
			0,5	0,2	0	0,90	kN/m ²
						2,00	- "-
		Combination	ooriohi				
Assunte le seguenti combinazioni dei	carichi (punto 2.5.3)	Combinazioni dei si ha:	Carichi				
SLU - perm:	γ _{G1} ·G _{1k} + γ _{G2} ·G _{2k}					(2.5.1)	
SLU - breve:	$\gamma G_1 \cdot G_1 + \gamma G_2 \cdot G_2 + \gamma G_1 \cdot G_1 + \gamma G_2 \cdot G_2 + $	√01: O k1				(=:=:=)	
SLE - perm:	$G_1 + G_2$	1 4 1 X 11				(2.5.3)	
						(2.3.3)	
SLE - var:	Qk1						
da cui si ricavano i carichi portati a me	tro:						
·							
	γi∗G1k	γi∗G2k	γi∗Qk1				
SLU - perm:	1,17	0,98	0,00	4,40	kN/m		
SLU - breve:	1,17	0,98	1,35	7,16	kN/m		
	,=-	-,	_,	,	,		
SLE - perm:	0,90	0,65	0,00	3,18	kN/m		
SLE - var:	0,00	0,00	0,90	1,85	kN/m		
		Verifica SLI					
F _{d,I}	7,16	kN/m		k _{mod}	0,8		
ام cui discendono:	1,10	NIN/III		r™od	0,0		
aa cui uiscenuono:	N.4	120.00	lcN1m=				
	M _{d,I}	139,90	kNm				
	1						
	T _{d,I}	44,77	kN				
F _{d.II}	4,40	44,77 kN/m	KIV	k _{mod}	0,6		
F _{d,II}	4,40	kN/m		k _{mod}	0,6		
F _{d,II}	4,40 M _{d,II}	kN/m 85,85	kNm	k _{mod}	0,6		
F _{d,II}	4,40	kN/m		k _{mod}	0,6		
	4,40 M _{d,II} T _{d,II}	kN/m 85,85	kNm kN				
	4,40 M _{d,II} T _{d,II}	kN/m 85,85	kNm	k _{mod}	N/mm²		verificato
Verifica a flessione	4,40 M _{d,II} T _{d,II}	kN/m 85,85 27,47	kNm kN				verificato
Verifica a flessione $\sigma_{d,l} = \sigma_{d,ll} = 0$	4,40 M _{d,II} T _{d,II}	kN/m 85,85 27,47	kNm kN f _{m,d}	13,24 9,93	N/mm²	CNP DT20	verificato
Verifica a flessione σ _{d,I} = σ _{d,II} = Verifica a taglio	4,40 M _{d,II} T _{d,II} = 11,66 = 7,15	kN/m 85,85 27,47	kNm kN f _{m,d} f _{m,d} k _{ef}	13,24 9,93 0,67	N/mm² N/mm²	CNR DT20	verificato
Verifica a flessione $\sigma_{d,l} = \sigma_{d,ll} =$	4,40 M _{d,II} T _{d,II} 11,66 7,15	kN/m 85,85 27,47	kNm kN f _{m,d}	13,24 9,93	N/mm²	CNR DT20	verificato

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
P	ag. 78 di 86				

		Verifica SLE				
SLE - perm:	3,18	kN/m	3,18	N/mm		
SLE - var:	1,845	kN/m	1,85	N/mm		
		1 =	4,E+09	mm ⁴		
		A =	120000	mm ²		
		L =	12500	mm		
		E _{0,m}	11500	N/mm ²		
		G _m	650	N/mm ²		
Valutazione della freccia dovuta ai	Carichi Permanenti					
				K _{def}	0,6	(classe di servizio 1)
Valore della Freccia istantanea			W _{ist,G}	25,34	mm	
Valore della Freccia finale			$W_{fin,G}$	40,55	mm	
Valutazione della freccia dovuta ai	Carichi Variabili					
			Ψ21	0		Neve < 1000 m s.l.m.
Valore della Freccia istantanea			$W_{ist,Q}$	14,72	mm	
Valore della Freccia finale			$W_{\text{fin,Q}}$	0,00	mm	
dovendo risultare:		VERIFICHE DA EUR				
W _{ist}	40,06	<	L/300	41,67	mm	verificato
W_{fin}	40,55	<	L/250	50,00	mm	verificato
		VERIFICHE DA	NORMATI	VA ITALIAN	A SU Q1	
W _{ist} ,Q1	14,72	<	L/300	41,67	mm	verificato

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

,						
Docume	Documento:					
C51D_SR1A						
Rev.	Data					
_						
Α	Ottobre 2020					
Pag. 79 di 86						

TRAVI INGRESSO

		Analisi dei car	ichi				
Pesi Permanenti Strutturali						γG1=	1,3
Peso proprio trave						0,21	kN/m ²
G1						0,63	kN/m ²
G1 non compiutamenti definiti						0,00	kN/m ²
Totale permanenti					G1k =	0,84	kN/m ²
регисте						5,61	
Pesi Permanenti NON strutturali						γ _{G2} =	1.5
62						1,00	kN/m ²
J.C.						1,00	kN/m ²
							kN/m ²
F-4-1					Cal	4.00	kN/m ²
otale permanenti					G2k =	1,00	KN/M
Carico accidentale	tab 3.1.II		tab 2. 5.I			γQ1=	1,5
Cat.	Neve < 1000 m s.l.m	coperture speciali	Ψ0	Ψ1	Ψ2		
			0,5	0,2	0	_	
						0,90	kN/m ²
		Combinazioni dei	carichi				
ssunte le seguenti combinazioni dei	carichi (punto 2.5.3)	si ha:					
SLU - perm:	γg1·G1k+ γg2·G2k					(2.5.1)	
SLU - breve:	γgi ·G1k+ γg2 ·G2k +	vo1• O k1				, ,	
SLE - perm:	$G_1 + G_2$	l d i d i i				(2.5.3)	
SLE - var:						(2.3.3)	
LE - var:	Qk1						
la antatata da manara da manar							
da cui si ricavano i carichi portati a me	tro:						
	_						
	γi∗G1k	γi∗G2k	γi*Qk1				
SLU - perm:	1,09	1,50	0,00	6,86	kN/m		
LU - breve:	1,09	1,50	1,35	10,44	kN/m		
LE - perm:	0,84	1,00	0,00	4,87	kN/m		
LE - var:	0,00	0,00	0,90	2,39	kN/m		
		Verifica SL	U				
F _{d,I}	10,44	kN/m		k _{mod}	0,8		
da cui discendono:							
	M _{d,1}	133,13	kNm				
	T _{d,I}	52,72	kN				
	• a,ı	32,72	1014				
	6,86	kN/m		l _k	0.6		
	n Xh	kN/m		k _{mod}	0,6		
F _{d,II}				1			
F _{d,II}	M _{d,II}	87,51	kNm				
F _{d,II}		87,51 34,66	kNm				
F _{d,II}	M _{d,II}						
	M _{d,II}						
erifica a flessione	M _{d,II}	34,66	kN	13,24	N/mm²		verificato
erifica a flessione $\sigma_{ extsf{d,l}}$ =	M _{d,II} T _{d,II}	34,66	kN f _{m,d}	13,24	N/mm²		
'erifica a flessione	M _{d,II} T _{d,II}	34,66	kN	13,24 9,93	N/mm² N/mm²		verificato verificato
rifica a flessione $\sigma_{d,l} = \sigma_{d,ll} = 0$	M _{d,II} T _{d,II}	34,66	f _{m,d}	9,93		CNR DEC	verificato
/erifica a flessione $\sigma_{d,l} = \sigma_{d,ll} = 0$ /erifica a taglio	M _{d,II} T _{d,II} 11,09 7,29	34,66	f _{m,d} f _{m,d}	9,93	N/mm ²	CNR DT20	verificato 6/R1
/erifica a flessione $\sigma_{d,l} = \sigma_{d,ll} =$	M _{d,II} T _{d,II} 11,09 7,29	34,66	f _{m,d}	9,93	N/mm ² N/mm ²	CNR DT20	verificato
erifica a flessione $\sigma_{d,l} = \\ \sigma_{d,ll} =$ erifica a taglio	M _{d,II} T _{d,II} 11,09 7,29 0,98	34,66	f _{m,d} f _{m,d}	9,93	N/mm ²	CNR DT20	verificato 6/R1

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 80 di 86					

		Verifica SLE					
SLE - perm:	4,87	kN/m	4,87	N/mm			
SLE - var:	2,385	kN/m	2,39	N/mm			
		1 =	4,E+09	mm ⁴			
		A =	120000	mm ²			
		L=	10100	mm			
		E _{0,m}	11500	N/mm ²			
		G _m	650	N/mm ²			
Valutazione della freccia dovuta ai	Carichi Permanenti						
				K _{def}	0,6	(classe di	servizio 1)
Valore della Freccia istantanea			$W_{ist,G}$	16,90	mm		
Valore della Freccia finale			$W_{fin,G}$	27,04	mm		
Valutazione della freccia dovuta ai	Carichi Variabili						
			Ψ21	0		Neve < 100	00 m s.l.m.
Valore della Freccia istantanea			W _{ist.Q}	8,27	mm		
Valore della Freccia finale			$W_{fin,Q}$	0,00	mm		
dovendo risultare:		VERIFICHE DA EUR	OCODICE 5 E	APPENDIC	E NAZION	ALE	
W _{ist}	25,17	<	L/300	33,67	mm		verificato
W _{fin}	27,04	<	L/250	40,40	mm		verificato
•••	•	VERIFICHE DA					
W _{ist} ,Q1	8,27	<	L/300	33,67	mm		verificato

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Р	ag. 81 di 86					
	S1D_S Rev.					

VERIFICHE ELEMENTI PARETE E/O GUSCIO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI PARETE E GUSCIO IN C.A.

Per le pareti in c.a., in ottemperanza al cap. 7 del DM 17-01-18, viene effettuata una doppia progettazione: sia come Singolo Elemento sia come Parete Sismica o Parete Debolmente Armata.

Per la progettazione come *Singolo Elemento* di ogni elemento vengono riportati il codice dello stato di verifica con le sigle **Ok e NV**, il rapporto x/d, la verifica per sollecitazioni ultime (verifica a compressione media gli sforzi membranali, verifica a presso-flessionale e verifica a sollecitazioni taglianti), gli sforzi membranali e flessionali, il quantitativo di armatura nella direzione principale e secondaria sia inferiore che superiore e il quantitativo di armatura a taglio.

Per la progettazione come *Parete Sismica* o *Parete Debolmente Armata* vengono riportate invece le caratteristiche geometriche della parete e delle zone dissipative (quest'ultime solo nel caso di parete sismica), i coefficienti di verifica a compressione assiale, pressoflessione e sollecitazioni taglianti.

Inoltre vengono riportate per ogni quota significativa l'armatura principale e secondaria, l'armatura in zona confinata (solo per parete sismica) e non confinata, l'armatura concentrata all'estremità (per pareti debolmente armate), lo sforzo assiale aggiuntivo per q superiore a 2 e i valori di inviluppo di taglio e momento. Per le pareti debolmente armate viene riportato anche lo stato di verifica relativo alla snellezza.

Le azioni derivate dall'analisi, in ogni combinazione di calcolo, sono elaborate come previsto al punto 7.4.4.5.1: traslazione del momento, incremento e variazione diagramma taglio, incremento e decremento sforzo assiale

La progettazione nel caso dei gusci viene effettuata una progettazione come Singolo Elemento, riportando in tabella il rapporto x/d, la verifica per sollecitazioni ultime, (verifica a compressione media gli sforzi membranali, verifica a presso-flessionale e verifica a sollecitazioni taglianti) di ogni elemento.

Per ogni elemento, viene riportata inoltre la maglia di armatura necessaria in relazione alle risultanze della progettazione dei nodi dell'elemento stesso. Le quantità di armature necessarie sono armature (disposte rispettivamente in direzione principale e secondaria, inferiore e superiore) distribuite nell'elemento ed espresse in centimetri quadri per sviluppo lineare pari ad un metro.

Nel caso dei gusci viene effettuata, inoltre, la verifica a punzonamento, riportando in tabella il codice dello stato di verifica, il coefficiente di verifica per piastre prive di armature a taglio lungo il perimetro resistente e lungo il perimetro del pilastro, coefficiente di incremento dovuto ai momenti flettenti, fattore di amplificazione per le fondazioni, il fattorei di amplificazione dell'altezza utile per individuare il perimetro di verifica lungo il quale l'armatura a taglio non è richiesta, il quantitativo di armatura a punzonamento, il numero di serie di armature, il numero di braccia di armatura ed il riferimento alla combinazione più gravosa.

Simbologia adottata nelle tabelle di verifica

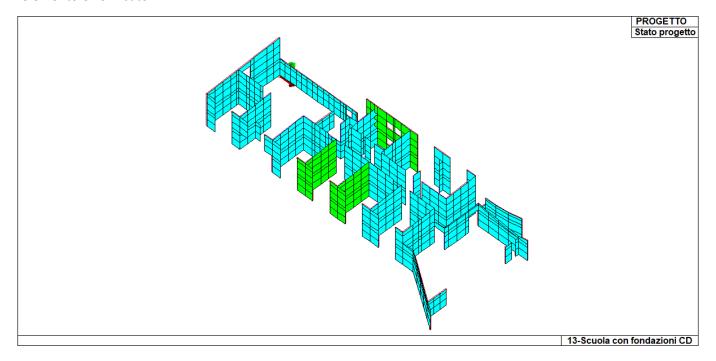
Per gli elementi con progettazione "Singolo Elemento ..." è presente una tabella con i simboli di seguito descritti:

Macro Guscio	Numero del macroelemento di tipo guscio (elementi non verticali contigui ed analoghi per proprietà)
Macro Setto	Numero del macroelemento di tipo setto (elementi verticali contigui ed analoghi per proprietà)
Spessore	Spessore della parete
Id Materiale	Codice del materiale assegnato all'elemento
Id Criterio	Codice del criterio di progetto assegnato all'elemento
Progettazione	Sigla tipo di Elemento: - Singolo Elemento; - Singolo Elemento FONDAZIONE; - Singolo Elemento NON DISSIPATIVO

Per le verifiche degli elementi con progettazione "Singolo Elemento ..." e Progettazione Composta è presente una tabella con i simboli di seguito descritti:

John Simbon di Se	guito descritti.
Nodo	numero del nodo
Stato	codice di verifica dell'elemento ok o NV
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione (per sola flessione)
V N/M	Verifica delle sollecitazioni Normali (momento e sforzo normale)
Ver. rid	Rapporto Nd/Nu (Nu ottenuto con riduzione del 25% di fcd)
Af pr+	quantità di armatura richiesta in direzione principale relativa alla faccia positiva (estradosso piastre) (valore derivante da calcolo o minimo normativo)
Af pr-	quantità di armatura richiesta in direzione principale relativa alla faccia negativa (intradosso piastre) (valore derivante da calcolo o minimo normativo)
Af sec+	quantità di armatura richiesta in direzione secondaria relativa alla faccia positiva (estradosso piastre) (valore derivante da calcolo o minimo normativo)
Af sec-	quantità di armatura richiesta in direzione secondaria relativa alla faccia negativa (intradosso piastre) (valore derivante da calcolo o minimo normativo)
Nz No Nzo	Sforzi membranali per pareti e\o setti verticali
Mz Mo Mzo	Sforzi flessionali per pareti e∖o setti verticali

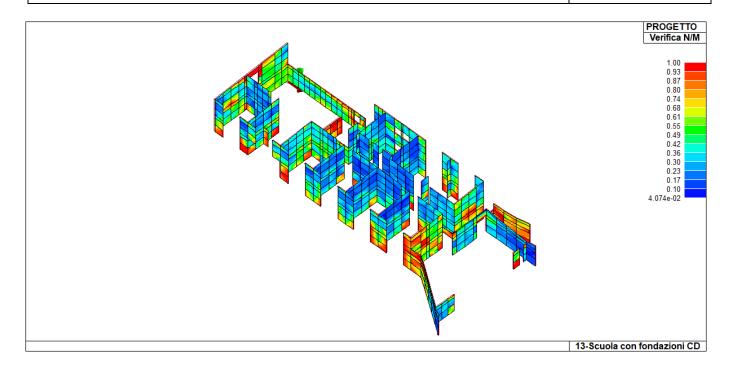
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

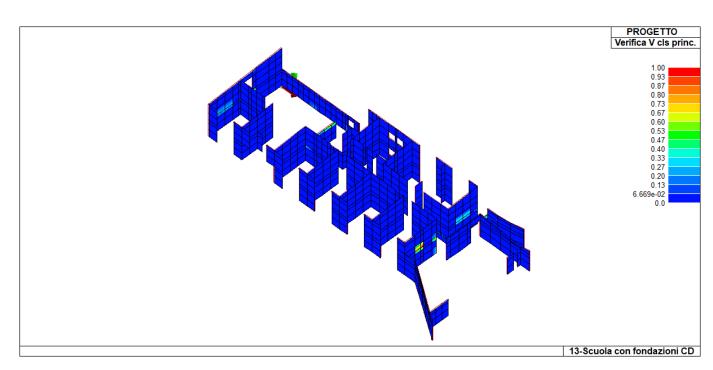

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:						
C51D_SR1A						
Rev.	Data					
Δ	Ottobre 2020					
A	Ollobre 2020					
Pag. 82 di 86						
,	ag. 02 ai 00					

Nx	Ny	Nxy	Sforzi membranali per gusci orizzontali
Mx	Mx	Mxy	Sforzi flessionali per gusci orizzontali

Nodo	numero del nodo
Stato	codice di verifica dell'elemento ok o NV
Max tau	Tensione tangenziale Massima
Ver V pr	Verifica a taglio nella direzione principale lato calcestruzzo
Ver V sec	Verifica a taglio nella direzione secondaria lato calcestruzzo
Af V pr	Armatura nella direzione principale
V pr-	Verifica dell'armatura nella direzione principale
Af V sec	Armatura nella direzione secondaria
V sec-	Verifica dell'armatura nella direzione secondaria

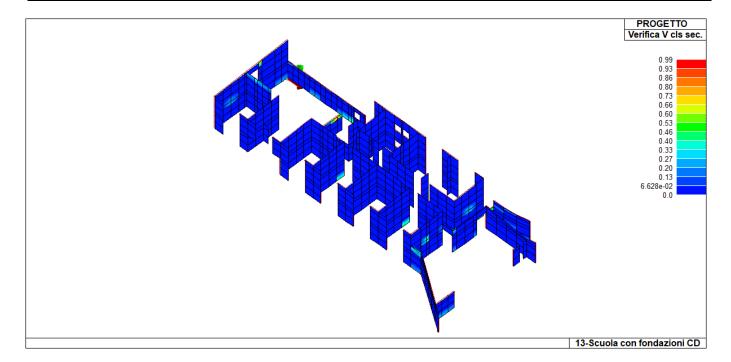

Di seguito si riporta graficamente lo stato di progetto dei setti in c.a., il colore celeste e verde indica che l'elemento è verificato.



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 83 di 86		

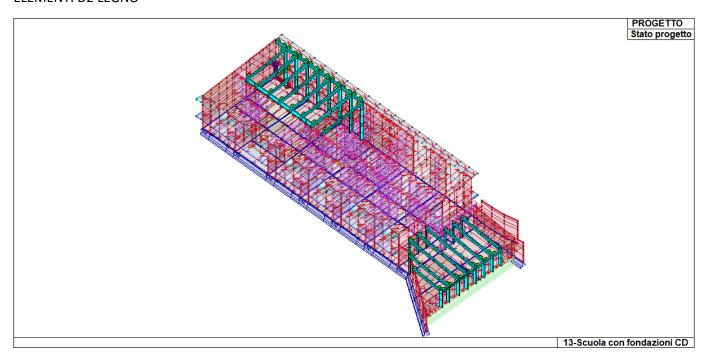


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

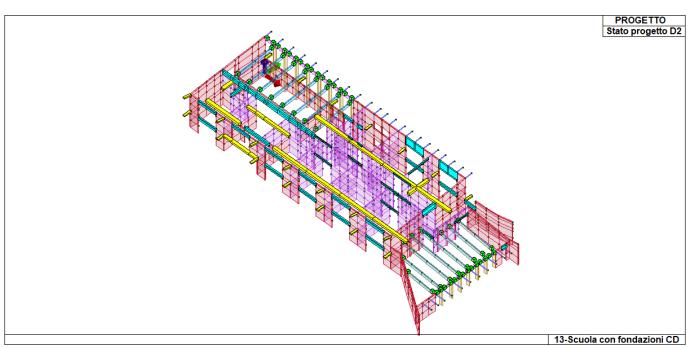
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 84 di 86	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

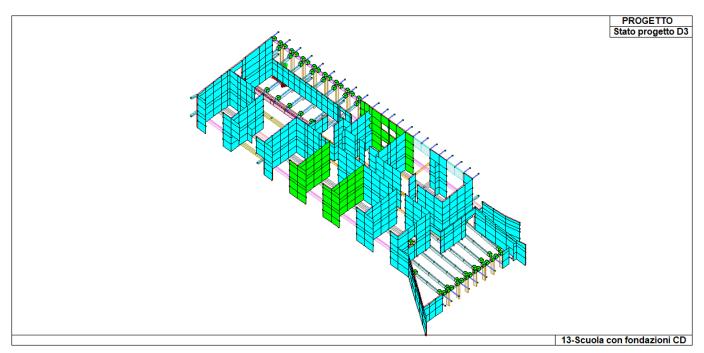
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 85 di 86		


VERIFICHE DI RESISTENZA AL FUOCO

Si riportano in forma grafica le principali verifiche di resistenza al fuoco.

ELEMENTI D2 LEGNO

ELEMENTI D2 C.A.



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO A

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 86 di 86	

ELEMENTI D3 C.A.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 1 di 109		

CORPO B: PALESTRA

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 2 di 109		

RELAZIONE DI CALCOLO STRUTTURALE	4
Premessa	4
Descrizione generale dell'opera	4
Quadro normativo di riferimento adottato	4
Azioni di progetto sulla costruzione	5
Modello numerico	6
Informazioni sul codice di calcolo	6
Modellazione delle azioni	7
Combinazioni e/o percorsi di carico	7
Verifiche agli stati limite ultimi	9
Verifiche agli stati limite di esercizio	9
RELAZIONE SUI MATERIALI	9
NORMATIVA DI RIFERIMENTO	10
CARATTERISTICHE MATERIALI UTILIZZATI	13
LEGENDA TABELLA DATI MATERIALI	13
MODELLAZIONE DELLE SEZIONI	21
LEGENDA TABELLA DATI SEZIONI	21
MODELLAZIONE STRUTTURA: NODI	23
LEGENDA TABELLA DATI NODI	23
TABELLA DATI NODI	23
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	31
TABELLA DATI TRAVI	31
MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	34
LEGENDA TABELLA DATI SOLAI-PANNELLI	34
SCHEMATIZZAZIONE DEI CASI DI CARICO	45
NEVE	48
VENTO	48
DEFINIZIONE DELLE COMBINAZIONI	55
LEGENDA TABELLA COMBINAZIONI DI CARICO	55
AZIONE SISMICA	63
VALUTAZIONE DELL' AZIONE SISMICA	63
RISULTATI NODALI	70

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 3 di 109		

RISULTATI ELEMENTI TIPO TRAVE	75
RISULTATI ELEMENTI TIPO SHELL	87
LEGENDA RISULTATI ELEMENTI TIPO SHELL	87
VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.	91
LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A	91
STATI LIMITE D' ESERCIZIO	94
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO	94
VERIFICHE ELEMENTI PARETE E/O GUSCIO IN C.A.	95
LEGENDA TABELLA VERIFICHE ELEMENTI PARETE E GUSCIO IN C.A	95
STATI LIMITE D' ESERCIZIO	102
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO	102
VERIFICHE S.L. ELEMENTI IN LEGNO	104
LEGENDA TABELLA VERIFICHE S.L. ELEMENTI IN LEGNO	104
VERIFICHE DI RESISTENZA AL FUOCO	109

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 4 di 109		

RELAZIONE DI CALCOLO STRUTTURALE

Premessa

La presente relazione di calcolo strutturale, in conformità al §10.1 del DM 17/01/18, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

Nella presente parte sono riportati i principali elementi di inquadramento del progetto esecutivo riguardante le strutture, in relazione agli strumenti urbanistici, al progetto architettonico, al progetto delle componenti tecnologiche in generale ed alle prestazioni attese dalla struttura.

Descrizione generale dell'opera

Trattasi di una struttura destinata ad attività scolastiche.

La struttura portante del nuovo manufatto è costituita da pareti, pilastri e travi in cemento armato. Il solaio del piano terra è in latero cemento mentre il solaio di copertura è in x-lam ed è sorretto da travi in legno lamellare.

L'apparato fondale è costituito da un graticcio di travi in cemento armato gettato in opera.

Descrizione generale dell'opera		
Fabbricato ad uso	Scolastico	
	Comune di EMPOLI (FI) (Regione TOSCANA)	
Ubicazione	Località EMPOLI (FI)	
	Longitudine 10.947, Latitudine 43.719	
Numero di piani	Fuori terra:1	
Numero di piani	le dimensioni dell'opera in pianta sono racchiuse in un rettangolo di 27.00x25.20	
Tipo di fondazione	Graticcio di travi rovesce	
Classe di duttilità	Non dissipativa	

Parametri della struttura			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]
IV	100.0	2.0	200.0

Fattore di struttura/comportamento E' stata eseguita una progettazione non dissipativa dunque il fattore di struttura adottato è unitario, q=1.

Quadro normativo di riferimento adottato

Le norme ed i documenti assunti quale riferimento per la progettazione strutturale vengono indicati di seguito.

Nel capitolo "normativa di riferimento" è comunque presente l'elenco completo delle normative disponibili.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 5 di 109		

Progetto-verifica degli elementi		
Progetto cemento armato	D.M. 17-01-2018	
Progetto acciaio	D.M. 17-01-2018	
Progetto legno	D.M. 17-01-2018	
Azione sismica		
Norma applicata per l' azione sismica	D.M. 17-01-2018	

Azioni di progetto sulla costruzione

Nei capitoli "modellazione delle azioni" e "schematizzazione dei casi di carico" sono indicate le azioni sulla costruzioni.

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico,dinamico, lineare o non lineare) e il metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * u = F dove K = matrice di rigidezza

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

Elemento tipo *TRUSS* (biella-D2)
Elemento tipo *BEAM* (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3)

Elemento tipo PLATE (piastra-guscio-D3)

Elemento tipo BOUNDARY (molla)

Elemento tipo STIFFNESS (matrice di rigidezza)

Elemento tipo **BRICK** (elemento solido)

Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 6 di 109	

Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-18, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità

Tipo di analisi strutturale	
Carichi verticali	SI
Sismica dinamica lineare	SI

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Informazioni sul codice di calcolo		
Titolo:	PRO_SAP PROfessional Structural Analysis Program	
Versione:	PROFESSIONAL (build 2020-05-189)	
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara	
Dati utente finale:	Eutecne Srl	
Codice Licenza:	Licenza dsi5843	

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: https://www.2si.it/it/prodotti/affidabilita/

Modellazione della geometria e proprietà meccaniche:		
nodi	1353	
elementi D2 (per aste, travi, pilastri)	535	
elementi D3 (per pareti, platee, gusci)	1061	
elementi solaio	55	
elementi solidi	0	
Dimensione del modello strutturale [cm]:		
X min =	-0.00	
Xmax =	2575.00	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev.	Data
Δ	Ottobre 2020
^	Ottoble 2020
Pag. 7 di 109	

Ymin =	-2461.64
Ymax =	0.00
Zmin =	0.00
Zmax =	827.00
Strutture verticali:	
Elementi di tipo asta	NO
Pilastri	SI
Pareti	SI
Setti (a comportamento membranale)	NO
Strutture non verticali:	
Elementi di tipo asta	NO
Travi	SI
Gusci	NO
Membrane	NO
Orizzontamenti:	
Solai con la proprietà piano rigido	SI
Solai senza la proprietà piano rigido	SI
Tipo di vincoli:	
Nodi vincolati rigidamente	NO
Nodi vincolati elasticamente	NO
Nodi con isolatori sismici	NO
Fondazioni puntuali (plinti/plinti su palo)	NO
Fondazioni di tipo trave	SI
Fondazioni di tipo platea	NO
Fondazioni con elementi solidi	NO

Modellazione delle azioni

Si veda il capitolo **"Schematizzazione dei casi di carico"** per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "Definizione delle combinazioni" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 8 di 109		

Combinazioni dei casi di carico		
APPROCCIO PROGETTUALE	Approccio 2	
Tensioni ammissibili	NO	
SLU	SI	
SLV (SLU con sisma)	SI	
SLC	NO	
SLD	SI	
SLO	NO	
SLU GEO A2 (per approccio 1)	NO	
SLU EQU	NO	
Combinazione caratteristica (rara)	SI	
Combinazione frequente	SI	
Combinazione quasi permanente (SLE)	SI	
SLA (accidentale quale incendio)	SI	

Principali risultati

I risultati devono costituire una sintesi completa ed efficace, presentata in modo da riassumere il comportamento della struttura, per ogni tipo di analisi svolta.

Nella presente relazione di calcolo sono riportati i seguenti risultati che il progettista ritiene di interesse per la descrizione e la compresione del/i modello/i e del comportamento della struttura:

per l'analisi modale:

- periodi dei modi di vibrare della struttura
- masse eccitate dai singoli modi
- massa eccitata totale

deformate e sollecitazioni:

- spostamenti e rotazioni dei singoli nodi della struttura
- reazioni vincolari (nel caso siano presenti nodi vincolati rigidamente)
- pressioni sul terreno (nel caso siano presenti elementi di fondazione)
- sollecitazioni sugli elementi d2 nelle combinazioni di calcolo più significative
- tensioni sugli elementi d3 nelle combinazioni di calcolo più significative
- sollecitazioni sui macroelementi da elementi d3 nelle combinazioni di calcolo più significative

La presente relazione, oltre ad illustrare in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare, riporta una serie di immagini:

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 9 di 109	

per i dati in ingresso:

- modello solido della struttura
- numerazione di nodi e ed elementi
- configurazioni di carico statiche
- configurazioni di carico sismiche con baricentri delle masse e eccentricità

per le combinazioni più significative (statisticamente più gravose per la struttura):

- configurazioni deformate
- diagrammi e inviluppi delle azioni interne
- mappe delle tensioni
- reazioni vincolari
- mappe delle pressioni sul terreno

per il progetto-verifica degli elementi:

- diagrammi di armatura
- percentuali di sfruttamento
- mappe delle verifiche più significative per i vari stati limite

Informazioni generali sull'elaborazione e giudizio motivato di accettabilità dei risultati.

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. Si allega al termine della presente relazione elenco sintetico dei controlli svolti (verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.).

Verifiche agli stati limite ultimi

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLU vengono indicate, con riferimento alla normativa adottata, le modalità ed i criteri seguiti per valutare la sicurezza della struttura nei confronti delle possibili situazioni di crisi ed i risultati delle valutazioni svolte. In via generale, oltre alle verifiche di resistenza e di spostamento, devono essere prese in considerazione verifiche nei confronti dei fenomeni di instabilità, locale e globale, di fatica, di duttilità, di degrado.

Verifiche agli stati limite di esercizio

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLE vengono indicate, con riferimento alla normativa adottata, le modalità seguite per valutare l'affidabilità della struttura nei confronti delle possibili situazioni di perdita di funzionalità (per eccessive deformazioni, fessurazioni, vibrazioni, etc.) ed i risultati delle valutazioni svolte.

RELAZIONE SUI MATERIALI

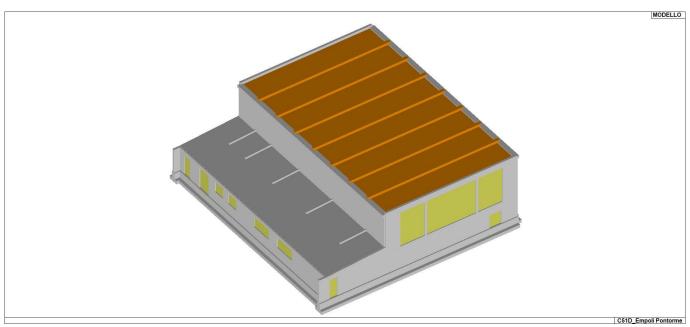
Il capitolo Materiali riportata informazioni esaustive relative all'elenco dei materiali impiegati e loro modalità di posa in opera e ai valori di calcolo.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

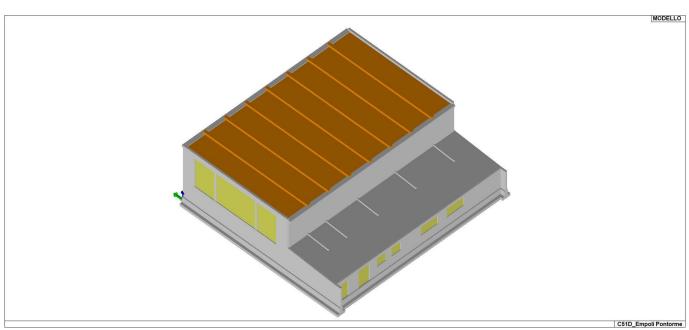
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pa	Pag. 10 di 109				

NORMATIVA DI RIFERIMENTO


- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 4. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 6. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 7. Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 9. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 11. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 12. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 13. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 14. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 15. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 16. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 17. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 18. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 19. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 20. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 21. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per ali edifici.
- 22. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.
- 23. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 24. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 25. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 26. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 27. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 28. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 29. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- 30. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.
- 31. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 32. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 33. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adeguamento degli edifici.
- 34. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

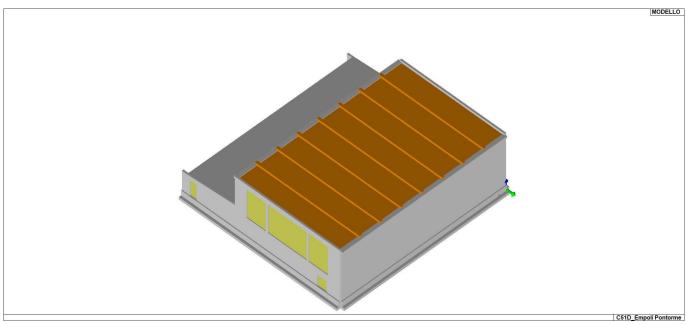
NOTA il capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 11 di 109					

01_INT_VISTA_SOLIDA_001



01_INT_VISTA_SOLIDA_002

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:						
C51D_SR1A						
Rev. Data						
A Ottobre 2020						
Pag. 12 di 109						

01_INT_VISTA_SOLIDA_004

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 13 di 109					

CARATTERISTICHE MATERIALI UTILIZZATI LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
4	materiale tipo legno

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

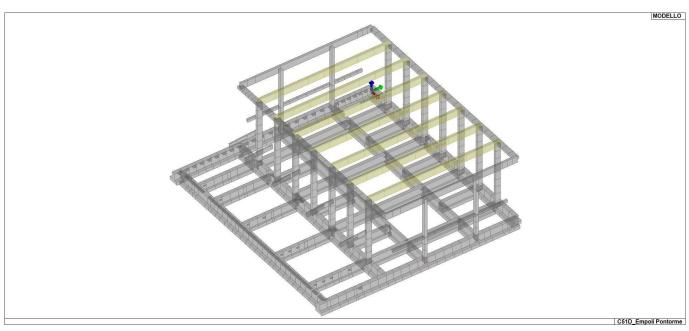
a descrizione). I el ogni materiale vengono riportati in tabella i seguenti dati.						
Young	modulo di elasticità normale E					
Poisson	coefficiente di contrazione trasversale ni					
G	modulo di elasticità tangenziale					
Gamma	peso specifico					
Alfa	coefficiente di dilatazione termica					
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo					
	se diverso da quello globale della struttura)					
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo					
	se diverso da quello globale della struttura)					
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari					
Massima compressione	Massima tensione di compressione per aste non lineari					
Massima trazione	Massima tensione di trazione per aste non lineari					
Fattore attrito	Coefficinete di attrito per aste non lineari					
Rapporto HRDb	Rapporto di hardening a flessione					
Rapporto HRDv	Rapporto di hardening a taglio					

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

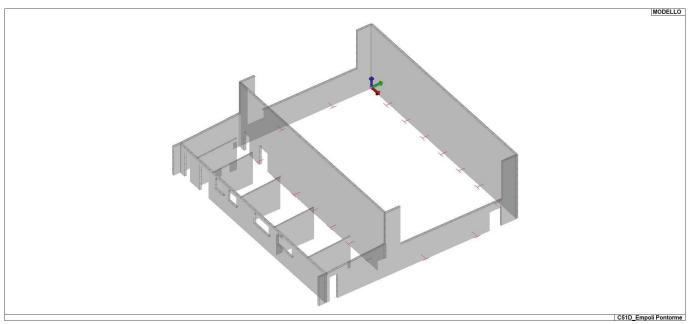

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
131				1.260e+05	0.0	6500.0	4.60e-04	1.00e-05	
	1.260e+05-legno E = 1.260e+05								
	Modulo E0,05			1.050e+05					
	Lamellare : SI								

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

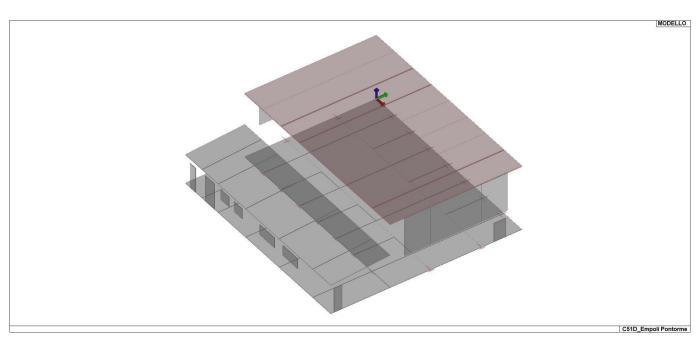
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:							
C51D SR1A							
Rev. Data							
	0:: 1 0000						
A Ottobre 2020							
Pag. 14 di 109							

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
	Resistenza fc0	280.0							
	Resistenza ft0	223.0							
	Resistenza fm	280.0							
	Resistenza fv	35.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
144	Legno E = 1.260e+05 XLAM Pannelli orizzontali			1.061e+05	0.0	6900.0	5.00e-04	1.00e-05	
	ortotropi (XLAM -1- vert)-legno E = 1.061e+05								
	Modulo E0,05			1.061e+05					
	Lamellare : SI								
	Resistenza fc0	1.0							
	Resistenza ft0	1.0							
	Resistenza fm	1.0							
	Resistenza fv	1.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
158	vetro-materiale E = 100.00			100.0	0.0	50.0	2.50e-03	0.0	
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05



11_MOD_MATERIALI_D2


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 15 di 109					

11_MOD_MATERIALI_D3

11_MOD_MATERIALI_SOLAI

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Singolo elemento		Singolo elemento NON DISSIPATIVO		Singolo elemento	Singolo elemento
Armatura						
Inclinazione Av [gradi]	90.00	90.00	90.00	90.00	90.00	90.00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
	90.00	90.00	90.00	90.00	90.00	90.00
radi]						
/linima tesa	0.20	0.24	0.20	2.000e-02	0.20	0.20
	4.00	4.00	4.00	4.00	4.00	4.00
laglia unica	NO	NO	NO	NO	NO	NO
entrale						
Inico strato erticale	NO	NO	NO	NO	NO	NO
Jnico strato	NO	NO	NO	NO	NO	NO
orizzontale	0.00	0.00	0.00	0.00	0.00	0.00
	2.00	2.00	2.00	2.00	2.00	2.00
laglia V	40	40	40	40	40	40
iametro	12	10	10	10	12	12
	20	25	25	25	20	20
	12	12	12	12	12	12
laglia O	10	40	40	40	40	40
iametro	12	10	10	10	12	12
	25	25	25	25	25	25
iametro aggiuntivi tati limite ultimi	12	12	12	12	12	12
ensione fy	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
daN/cm2 ĺ						
ipo acciaio	tipo C	tipo C	tipo C	tipo C	tipo C	tipo C
Coefficiente gamma		1.15	1.15	1.15	1.15	1.15
	_	-	-	-	-	-
Coefficiente gamma	1.50	1.50	1.50	1.50	1.50	1.50
/erifiche con N	SI	SI	SI	SI	SI	SI
Tensioni						
mmissibili						
ensione amm. cls	97.50	97.50	97.50	97.50	97.50	97.50
daN/cm2]	2600.00	0000 00	0000 00	0000 00	2600.00	0000 00
acciaio [daN/cm2]		2600.00	2600.00	2600.00		2600.00
Rapporto	15.00	15.00	15.00	15.00	15.00	15.00
mogeneizzazione N						
Massimo rapporto	1.00	1.00	1.00	1.00	1.00	1.00
irea	1.00	1.00	1.00	1.00	1.00	1.00
ompressa/tesa						
Parete estesa						
debolmente						
ırmata						
attore	0.0	1.50	1.50	0.0	0.0	0.0
amplificazione taglio		1.00	1.00	0.0	0.0	0.0
/						
Hcrit. par. 7.4.4.5.1	0.0	0.0	0.0	0.0	0.0	0.0
cm]	-	-			-	
Hcrit. par. 7.4.6.1.4	0.0	0.0	0.0	0.0	0.0	0.0
cm] Diagramma	NO	NO	NO	NO	NO	NO
nviluppo taglio	INO	INO	INO	INO	INO	INO
	nagaun lete	nagaus lata	0000112 1242	2000112 1242	200112 1242	noone lete
'incolo lati	nessun lato	nessun lato	nessun lato	nessun lato	nessun lato	nessun lato
erifica come fascia		NO	NO	NO	NO	NO
iametro di stremità	0	0	0	0	0	0
ona confinata						
/linima tesa	1.00	1.00	1.00	1.00	1.00	1.00
lassima tesa	4.00	4.00	4.00	4.00	4.00	4.00
Distanza barre [cm	2.00	2.00	2.00	2.00	2.00	2.00
nterferro	2	2	2	2	2	2
Armatura inclinata						
rea barre [cm2]		0.0	0.0	0.0	0.0	0.0
Ingolo orizzontale		0.0	0.0	0.0	0.0	0.0
radi]	1					
	0.0	0.0	0.0	0.0	0.0	0.0
		JU. U	0.0	U. U	0.0	U. U

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

1	Documento:						
	2000						
	C51D_SR1A						
	Rev. Data						
	A Ottobre 2020						
	Pa	ag. 17 di 109					

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
cm]						
Resistenza al						
fuoco						
3- intradosso	NO	NO	NO	NO	SI	SI
3+ estradosso	SI	NO	NO	NO	NO	SI
Tempo di	60	15	15	15	60	60
esposizione R						

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetta a filo	NO	NO	NO	NO	NO	NO
Af inf: da g*L*L /	0.0	0.0	0.0	0.0	0.0	0.0
Armatura						
Minima tesa	0.15	0.24	0.13	2.000e-02	0.15	0.15
Minima compressa	0.15	0.24	0.13	2.000e-02	0.15	0.15
Massima tesa	4.00	4.00	4.00	4.00	4.00	4.00
Da sezione	SI	SI	SI	SI	SI	SI
Usa armatura teorica	NO	NO	NO	NO	NO	NO
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15	1.15	1.15	1.15	1.15	1.15
Coefficiente gamma c	1.50	1.50	1.50	1.50	1.50	1.50
Verifiche con N costante	SI	SI	SI	SI	SI	SI
Fattore di ridistribuzione	0.0	0.0	0.0	0.0	0.0	0.0
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander	Mander	Mander
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03
Fattore lambda	1.00	1.00	1.00	1.00	1.00	1.00
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03	4.500e-03	4.500e-03
epsilon c2	0.0	0.0	0.0	0.0	0.0	0.0
epsilon cy	0.0	0.0	0.0	0.0	0.0	0.0
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50	97.50	97.50
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00	2600.00	2600.00
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00	15.00	15.00
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00	1.00	1.00
Staffe						
Diametro staffe	0.0	0.0	0.0	0.0	0.0	0.0
Passo minimo [cm]	4.00	4.00	4.00	4.00	4.00	4.00
Passo massimo [cm]	30.00	30.00	30.00	30.00	30.00	30.00
Passo raffittito [cm]	15.00	15.00	15.00	15.00	15.00	15.00
Lunghezza zona raffittita [cm]	50.00	50.00	50.00	50.00	50.00	50.00
Ctg(Teta) Max	2.50	2.50	2.50	2.50	2.50	2.50
Percentuale sagomati	0.0	0.0	0.0	0.0	0.0	0.0
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00	1.00	1.00
Adotta scorrimento medio	NO	NO	NO	NO	NO	NO
Torsione non essenziale inclusa	SI	SI	SI	SI	SI	SI

Pilastri c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Privilegia lati					
Progetta a filo	NO	NO	NO	SI	NO	NO
Effetti del 2 ordine	SI	SI	SI	SI	SI	SI
Beta per 2-2	1.00	1.00	1.00	1.00	1.00	1.00
Beta per 3-3	1.00	1.00	1.00	1.00	1.00	1.00
Armatura						
Massima tesa	4.00	4.00	4.00	4.00	4.00	4.00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Pilastri c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Minima tesa	0.30	1.00	0.30	2.000e-02	0.30	0.30
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
Tensione fy staffe [daN/cm2]	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15	1.15	1.15	1.15	1.15	1.15
Coefficiente gamma c	1.50	1.50	1.50	1.50	1.50	1.50
Verifiche con N costante	SI	SI	SI	SI	SI	SI
Modello per il confinamento						
Relazione tensio-deformativa	Mander	Mander	Mander	Mander	Mander	Mander
Incrudimento acciaio	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03	5.000e-03
Fattore lambda	1.00	1.00	1.00	1.00	1.00	1.00
epsilon max,s	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02	4.000e-02
epsilon cu2	4.500e-03	4.500e-03	4.500e-03	4.500e-03	4.500e-03	4.500e-03
epsilon c2	0.0	0.0	0.0	0.0	0.0	0.0
epsilon cy	0.0	0.0	0.0	0.0	0.0	0.0
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50	97.50	97.50	97.50	97.50
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00	2600.00	2600.00
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00	15.00	15.00
Staffe						
Diametro staffe	0.0	0.0	0.0	0.0	0.0	0.0
Passo minimo [cm]	5.00	5.00	5.00	5.00	5.00	5.00
Passo massimo [cm]	25.00	25.00	25.00	25.00	25.00	25.00
Passo raffittito [cm]	15.00	15.00	15.00	15.00	15.00	15.00
Lunghezza zona raffittita [cm]	45.00	45.00	45.00	45.00	45.00	45.00
Ctg(Teta) Max	2.50	2.50	2.50	2.50	2.50	2.50
Luce di taglio per GR [cm]	1.00	1.00	1.00	1.00	1.00	1.00
Massimizza gerarchia	SI	SI	SI	SI	SI	SI

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	NO	NO	NO	NO	NO	NO
Af inf: da traliccio	SI	SI	SI	SI	SI	SI
Consenti armatura a taglio	NO	NO	NO	NO	NO	NO
Incrementa armatura longitudinale per taglio	SI	SI	SI	SI	SI	SI
Af inf: da q*L*L /	20.00	20.00	20.00	20.00	20.00	20.00
Incremento fascia piena [cm]	5.00	5.00	5.00	5.00	5.00	5.00
Armatura						
Minima tesa	0.15	0.15	0.15	0.15	0.15	0.15
Massima tesa	3.00	3.00	3.00	3.00	3.00	3.00
Minima compressa	0.0	0.0	0.0	0.0	0.0	0.0
Af/h [cm]	7.000e-02	7.000e-02	7.000e-02	7.000e-02	7.000e-02	7.000e-02
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00	4500.00	4500.00	4500.00	4500.00
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15	1.15	1.15	1.15	1.15	1.15
Coefficiente gamma c	1.50	1.50	1.50	1.50	1.50	1.50
Fattore di ridistribuzione	0.0	0.0	0.0	0.0	0.0	0.0
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00	85.00	85.00	85.00	85.00	85.00
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00	2600.00	2600.00	2600.00	2600.00
Rapporto omogeneizzazione N	15.00	15.00	15.00	15.00	15.00	15.00
Massimo rapporto area compressa/tesa	1.00	1.00	1.00	1.00	1.00	1.00
Verifica freccia						
Infinita	250.00	250.00	250.00	250.00	250.00	250.00
Istantanea	500.00	500.00	500.00	500.00	500.00	500.00
Fattore viscosità	3.00	3.00	3.00	3.00	3.00	3.00
Usa J non fessurato	NO	NO	NO	NO	NO	NO
Elementi non strutturali						
Tamponatura antiespulsione	NO	NO	NO	NO	NO	NO
Tamponatura con armatura	NO	NO	NO	NO	NO	NO
Fattore di struttura/comportamento	2.00	2.00	2.00	2.00	2.00	2.00
Coefficiente gamma m	0.0	0.0	0.0	0.0	0.0	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pa	aa. 19 di 109				

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Periodo Ta	0.0	0.0	0.0	0.0	0.0	0.0
Altezza pannello	0.0	0.0	0.0	0.0	0.0	0.0

Legno	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere	., ., .,					
aste						
	0.80	0.80	0.80	0.80	0.80	0.80
travi	0.00	0.00	0.00	0.00	0.00	0.00
	SI	SI	SI	SI	SI	SI
automatico	.	O.	0.		<u>.</u>	.
3-3 Beta assegnato	1 00	1.00	1.00	1.00	1.00	1.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]	0.0	0.0	0.0	0.0	0.0	0.0
2-2 Beta * L	SI	SI	SI	SI	SI	SI
automatico	.	·	•		·	•
2-2 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
	SI	SI	SI	SI	SI	SI
automatico						
1-1 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
pilastri						
Metodo di calcolo 3-	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato
3	3		3	3		3
3-3 Beta assegnato 2	2.00	2.00	2.00	2.00	2.00	2.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
Metodo di calcolo 2-	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato	Assegnato
2	J		J			
2-2 Beta assegnato 2	2.00	2.00	2.00	2.00	2.00	2.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
1-1 Beta assegnato	1.00	1.00	1.00	1.00	1.00	1.00
	0.0	0.0	0.0	0.0	0.0	0.0
assegnato [cm]						
Generalità						
Gamma non	1.50	1.50	1.50	1.50	1.50	1.50
sismico						
Gamma sismico	1.50	1.50	1.50	1.50	1.50	1.50
Classificazione						
Classe di servizio	2 (media umidità)					
Per classe di	,	,	,	,	,	
servizio 1						
Kmod permanente	0.60	0.60	0.60	0.60	0.60	0.60
	0.70	0.70	0.70	0.70	0.70	0.70
	0.80	0.80	0.80	0.80	0.80	0.80
	0.90	0.90	0.90	0.90	0.90	0.90
	1.10	1.10	1.10	1.10	1.10	1.10
	0.60	0.60	0.60	0.60	0.60	0.60
Per classe di						
servizio 2						
Kmod permanente	0.60	0.60	0.60	0.60	0.60	0.60
	0.70	0.70	0.70	0.70	0.70	0.70
	0.80	0.80	0.80	0.80	0.80	0.80
	0.90	0.90	0.90	0.90	0.90	0.90
	1.10	1.10	1.10	1.10	1.10	1.10
	0.80	0.80	0.80	0.80	0.80	0.80
Per classe di						
servizio 3						
	0.50	0.50	0.50	0.50	0.50	0.50
	0.55	0.55	0.55	0.55	0.55	0.55
i tilloù luliga - I						

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:				
C51D_SR1A				
Rev. Data				
A Ottobre 2020				
Pa	ag. 20 di 109			

Legno	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Kmod breve	0.70	0.70	0.70	0.70	0.70	0.70
Kmod istantanea	0.90	0.90	0.90	0.90	0.90	0.90
Kdef	2.00	2.00	2.00	2.00	2.00	2.00

XLAM	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
L direzione 1 [*] [cm]	1.00	1.00	1.00	1.00	1.00	1.00
L direzione 2 [cm]	0.0	0.0	0.0	0.0	0.0	0.0
Verifica V da D.38	NO	NO	NO	NO	NO	NO
Verifica M da M.5-45	NO	NO	NO	NO	NO	NO
Media valori elementi	SI	SI	SI	SI	SI	SI
Connessioni pareti						
rvpk [daN/cm]	50.00	50.00	50.00	50.00	50.00	50.00
rvtk [daN/cm]	50.00	50.00	50.00	50.00	50.00	50.00
rvlk [daN/cm]	50.00	50.00	50.00	50.00	50.00	50.00
RHk [daN]	5000.00	5000.00	5000.00	5000.00	5000.00	5000.00
dH [cm]	25.00	25.00	25.00	25.00	25.00	25.00
fcH90k [daN/cm2]	20.00	20.00	20.00	20.00	20.00	20.00
Pannelli solaio						
f ist <l <="" td=""><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td><td>500.00</td></l>	500.00	500.00	500.00	500.00	500.00	500.00
f inf <l <="" td=""><td>400.00</td><td>350.00</td><td>350.00</td><td>350.00</td><td>400.00</td><td>400.00</td></l>	400.00	350.00	350.00	350.00	400.00	400.00
Verifica vibrazioni (EC5 7.3)	NO	NO	NO	NO	NO	NO
E massetto collaborante [daN/cm2]	200000.00	200000.00	200000.00	200000.00	200000.00	200000.00
t massetto collaborante [cm]	4.00	4.00	4.00	4.00	4.00	4.00
Smorzamento percentuale	0.0	0.0	0.0	0.0	0.0	0.0
Resistenza al fuoco						
Spessore carbonizzazione [cm]	0.0	4.60	0.0	0.0	4.60	4.60
3- intradosso	SI	SI	NO	NO	SI	SI
3+ estradosso	NO	NO	NO	NO	NO	NO

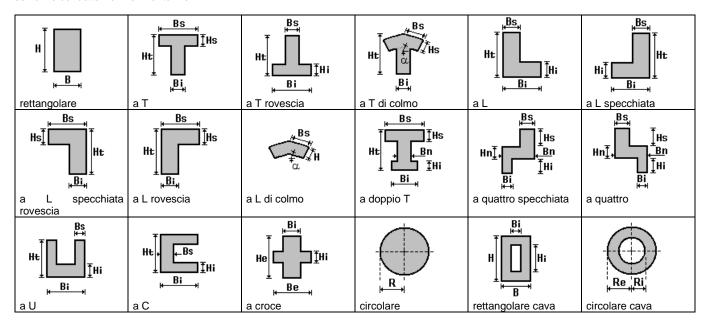
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 21 di 109						

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

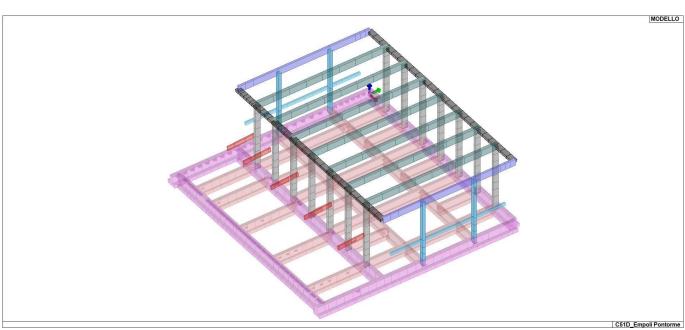
- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Docume	Documento:						
C51D_SR1A							
Rev.	Data						
Α	Ottobre 2020						
Pag. 22 di 109							

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	Pilastri	1800.00	1500.00	1500.00	3.699e+05	1.350e+05	5.400e+05	9000.00	1.800e+04	1.350e+04	2.700e+04
2	pilastro b=30 h=45	1350.00	1125.00	1125.00	2.349e+05	1.013e+05	2.278e+05	6750.00	1.013e+04	1.013e+04	1.519e+04
3	trave binata-	2736.00	2280.00	2280.00	8.292e+05	2.955e+05	1.317e+06	1.642e+04	3.466e+04	2.462e+04	5.198e+04
	Rettangolare: b=36 h=76										
5	trave	750.00	625.00	625.00	7.787e+04	3.906e+04	5.625e+04	3125.00	3750.00	4687.50	5625.00
6	trave	1900.00	1583.33	1583.33	3.138e+05	9.896e+04	9.145e+05	7916.67	2.407e+04	1.188e+04	3.610e+04
7	trave fondazione	00.0088	0.0	0.0	5.710e+06	6.593e+06	1.063e+07	1.099e+05	1.461e+05	1.940e+05	2.547e+05
8	trave di fondazione-T	6400.00	0.0	0.0	3.191e+06	2.133e+06	7.893e+06	5.333e+04	1.128e+05	9.600e+04	1.920e+05
	rovescia: bi=80 ht=120										
	bs=40 hi=40										
9	trave-Rettangolare: b=15 h=50	750.00	625.00	625.00	4.562e+04	1.406e+04	1.563e+05	1875.00	6250.00	2812.50	9375.00
10	travetto solaio S0-T	400.00	0.0	0.0	8032.91	2.333e+04	3.055e+04	1166.67	1735.76	2200.00	3040.00
	ribassata: bi=10 ht=28										
	bs=40 hs=4										
11	travetto solaio-T	470.00	0.0	0.0	9969.14	5.430e+04	2.614e+04	2172.07	1569.99	3730.00	2820.50
	ribassata: bi=11 ht=25										
	bs=50 hs=5										
14	trave b=60 h=30	1800.00	1500.00	1500.00	3.699e+05	5.400e+05	1.350e+05	1.800e+04	9000.00	2.700e+04	1.350e+04

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 23 di 109						

MODELLAZIONE STRUTTURA: NODI LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Nodo	Х	Υ	Z	Nodo	Х	Υ	Z	Nodo	Х	Υ	Z
	cm	cm	cm		cm	cm	cm		cm	cm	cm
1	0.0	0.0	0.0	2	2575.0	0.0	0.0	3	2575.0	-2371.6	0.0
4	1990.0	-2371.6	0.0	5	1726.0	-2371.6	0.0	6	1582.7	-2371.6	0.0
7	1318.7	-2371.6	0.0	8	1005.8	-2371.6	0.0	9	861.8	-2371.6	0.0
10	774.9	-2371.6	0.0	11	630.9	-2371.6	0.0	12	517.3	-2371.6	0.0
13	185.0	-2371.6	0.0	14	353.3	-2371.6	0.0	15	85.0	-2371.6	0.0
16	5.48e-06	-2371.6	0.0	17	5.48e-06	-2461.6	0.0	18	320.0	0.0	0.0
19	2147.5	-1635.0	531.8	20	2255.0	0.0	0.0	21	2040.0	-1635.0	630.2
22	320.0	-1635.0	0.0	23	2147.5	-1635.0	630.2	24	2255.0	-1635.0	422.7
25	2255.0	-1635.0	630.2	26	3.78e-06	-1635.0	0.0	27	90.0	-1635.0	0.0
28	190.0	-1635.0	0.0	29	365.0	-1635.0	0.0	30	511.0	-1635.0	0.0
31	2575.0	-1635.0	0.0	32	1610.0	-1430.6	827.0	33	293.6	-2371.6	0.0
34	1287.5	-613.1	827.0	35	577.0	-2371.6	0.0	36	965.0	-408.8	827.0
37	1065.4	-2371.6	0.0	38	642.5	-204.4	827.0	39	1658.3	-2371.6	0.0
40	642.5	-1430.6	827.0	41	2255.0	-2371.6	0.0	42	0.0	-500.0	0.0
43	2468.3	-1635.0	728.6	44	5.48e-06	-1135.0	0.0	45	2361.7	-1635.0	827.0
46	2575.0	-1135.0	0.0	47	2468.3	-1635.0	827.0	48	642.5	0.0	0.0
49	2040.0	-1635.0	728.6	50	965.0	0.0	0.0	51	2147.5	-1635.0	728.6
52	1287.5	0.0	0.0	53	2255.0	-1635.0	728.6	54	1610.0	0.0	0.0
55	2040.0	-1635.0	827.0	56	1932.5	0.0	0.0	57	2147.5	-1635.0	827.0
58	2575.0	-200.0	0.0	59	642.5	-1635.0	0.0	60	2468.3	-1635.0	531.8
61	965.0	-1635.0	0.0	62	2361.7	-1635.0	531.8	63	1287.5	-1635.0	0.0
64	2361.7	-1635.0	630.2	65	1610.0	-1635.0	0.0	66	2468.3	-1635.0	630.2
67	1932.5	-1635.0	0.0	68	2361.7	-1635.0	728.6	69	2575.0	-346.0	0.0
70	2575.0	-2233.3	380.8	71	2575.0	-2349.6	372.0	72	2575.0	-2461.6	0.0
73	1825.0	-1635.0	827.0	74	2575.0	-500.0	0.0	75	0.0	0.0	827.0
76	2575.0	0.0	827.0	77	320.0	0.0	827.0	78	2255.0	0.0	827.0
79	320.0	-1635.0	827.0	80	2255.0	-1635.0	827.0	81	3.78e-06	-1635.0	827.0
82	2575.0	-1635.0	827.0	83	0.0	-500.0	827.0	84	5.48e-06	-1135.0	827.0
85	2575.0	-1135.0	827.0	86	642.5	0.0	827.0	87	965.0	0.0	827.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

88	1287.5	0.0	827.0	89	1610.0	0.0	827.0	90	1932.5	0.0	827.0
91	2575.0	-62.5	356.7	92	642.5	-1635.0	827.0	93	965.0	-1635.0	827.0
94	1287.5	-1635.0	827.0	95	1610.0	-1635.0	827.0	96	1932.5	-1635.0	827.0
97	2575.0	-182.5	827.0	98	2575.0	-500.0	827.0	99	106.7	0.0	0.0
100	106.7	0.0	91.9	101	0.0	0.0	91.9	102	213.3	0.0	0.0
103	213.3	0.0	91.9	104	320.0	0.0	91.9	105	106.7	0.0	183.8
106	0.0	0.0	183.8	107	213.3	0.0	183.8	108	320.0	0.0	183.8
109	106.7	0.0	275.7	110	0.0	0.0	275.7	111	213.3	0.0	275.7
112	320.0	0.0	275.7	113	106.7	0.0	367.6	114	0.0	0.0	367.6
115	213.3	0.0	367.6	116	320.0	0.0	367.6	117	106.7	0.0	459.4
118	0.0	0.0	459.4	119	213.3	0.0	459.4	120	320.0	0.0	459.4
121	106.7	0.0	551.3	122	0.0	0.0	551.3	123	213.3	0.0	551.3
124	320.0	0.0	551.3	125	106.7	0.0	643.2	126	0.0	0.0	643.2
127	213.3	0.0	643.2	128	320.0	0.0	643.2	129	106.7	0.0	735.1
130	0.0	0.0	735.1	131	213.3	0.0	735.1	132	320.0	0.0	735.1
133	106.7	0.0	827.0	134	213.3	0.0	827.0	135	427.5	0.0	0.0
136	427.5	0.0	91.9	137	535.0	0.0	0.0	138	535.0	0.0	91.9
139	642.5	0.0	91.9	140	427.5	0.0	183.8	141	535.0	0.0	183.8
142	642.5	0.0	183.8	143	427.5	0.0	275.7	144	535.0	0.0	275.7
145	642.5	0.0	275.7	146	427.5	0.0	367.6	147	535.0	0.0	367.6
148	642.5	0.0	367.6	149	427.5	0.0	459.4	150	535.0	0.0	459.4
151	642.5	0.0	459.4	152	427.5	0.0	551.3	153	535.0	0.0	551.3
154	642.5	0.0	551.3	155	427.5	0.0	643.2	156	535.0	0.0	643.2
157	642.5	0.0	643.2	158	427.5	0.0	735.1	159	535.0	0.0	735.1
160	642.5	0.0	735.1	161	427.5	0.0	827.0	162	535.0	0.0	827.0
163	750.0	0.0	0.0	164	750.0	0.0	91.9	165	857.5	0.0	0.0
166	857.5	0.0	91.9	167	965.0	0.0	91.9	168	750.0	0.0	183.8
169	857.5	0.0	183.8	170	965.0	0.0	183.8	171	750.0	0.0	275.7
172	857.5	0.0	275.7	173	965.0	0.0	275.7	174	750.0	0.0	367.6
175	857.5	0.0	367.6	176	965.0	0.0	367.6	177	750.0	0.0	459.4
178	857.5	0.0	459.4	179	965.0	0.0	459.4	180	750.0	0.0	551.3
181	857.5	0.0	551.3	182	965.0	0.0	551.3	183	750.0	0.0	643.2
184	857.5	0.0	643.2	185	965.0	0.0	643.2	186	750.0	0.0	735.1
187	857.5	0.0	735.1	188	965.0	0.0	735.1	189	750.0	0.0	827.0
190	857.5	0.0	827.0	191	1072.5	0.0	0.0	192	1072.5	0.0	91.9
193	1180.0	0.0	0.0	194	1180.0	0.0	91.9	195	1287.5	0.0	91.9
196	1072.5	0.0	183.8	197	1180.0	0.0	183.8	198	1287.5	0.0	183.8
199	1072.5	0.0	275.7	200	1180.0	0.0	275.7	201	1287.5	0.0	275.7
202	1072.5	0.0	367.6	203	1180.0	0.0	367.6	204	1287.5	0.0	367.6
205	1072.5	0.0	459.4	206	1180.0	0.0	459.4	207	1287.5	0.0	459.4
208	1072.5	0.0	551.3	209	1180.0	0.0	551.3	210	1287.5	0.0	551.3
211	1072.5	0.0	643.2	212	1180.0	0.0	643.2	213	1287.5	0.0	643.2
214	1072.5	0.0	735.1	215	1180.0	0.0	735.1	216	1287.5	0.0	735.1
217	1072.5	0.0	827.0	218	1180.0	0.0	827.0	219	1395.0	0.0	0.0
220	1395.0	0.0	91.9	221	1502.5	0.0	0.0	222	1502.5	0.0	91.9
223	1610.0	0.0	91.9	224	1395.0	0.0	183.8	225	1502.5	0.0	183.8
226	1610.0	0.0	183.8	227	1395.0	0.0	275.7	228	1502.5	0.0	275.7
229	1610.0	0.0	275.7	230	1395.0	0.0	367.6	231	1502.5	0.0	367.6
232	1610.0	0.0	367.6	233	1395.0	0.0	459.4	234	1502.5	0.0	459.4
235	1610.0	0.0	459.4	236	1395.0	0.0	551.3	237	1502.5	0.0	551.3
238	1610.0	0.0	551.3	239	1395.0	0.0	643.2	240	1502.5	0.0	643.2
241	1610.0	0.0	643.2	242	1395.0	0.0	735.1	243	1502.5	0.0	735.1
244	1610.0	0.0	735.1	245	1395.0	0.0	827.0	246	1502.5	0.0	827.0
247	1717.5	0.0	0.0	248	1717.5 1932.5	0.0	91.9	249	1825.0	0.0	0.0
250	1825.0 1825.0	0.0	91.9	251		0.0	91.9	252	1717.5	0.0	183.8
253	1825.0	0.0	183.8	254	1932.5 1932.5	0.0	183.8	255	1717.5	0.0	275.7
256 259	1825.0	0.0 0.0	275.7 367.6	257 260	1932.5	0.0	275.7 367.6	258 261	1717.5 1717.5	0.0 0.0	367.6 459.4
262	1825.0	0.0	459.4	263	1932.5	0.0 0.0	459.4	264	1717.5	0.0	551.3
262 265	1825.0	0.0	459.4 551.3	263 266	1932.5	0.0	459.4 551.3	264 267	1717.5	0.0	643.2
268	1825.0	0.0	643.2	269	1932.5	0.0	643.2	270	1717.5	0.0	735.1
271	1825.0	0.0	735.1	272	1932.5	0.0	735.1	273	1717.5	0.0	827.0
274	1825.0	0.0	827.0	275	2040.0	0.0	0.0	276	2040.0	0.0	91.9
274 277	2147.5	0.0	0.0	278	2147.5	0.0	91.9	279	2255.0	0.0	91.9
280	2040.0	0.0	183.8	281	2147.5	0.0	183.8	282	2255.0	0.0	183.8
283	2040.0	0.0	275.7	284	2147.5	0.0	275.7	285	2255.0	0.0	275.7
286	2040.0	0.0	367.6	287	2147.5	0.0	367.6	288	2255.0	0.0	367.6
289	2040.0	0.0	459.4	290	2147.5	0.0	459.4	291	2255.0	0.0	459.4
292	2040.0	0.0	551.3	293	2147.5	0.0	551.3	294	2255.0	0.0	551.3
295	2040.0	0.0	643.2	296	2147.5	0.0	643.2	297	2255.0	0.0	643.2
298	2040.0	0.0	735.1	299	2147.5	0.0	735.1	300	2255.0	0.0	735.1

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

| Documento: | C51D_SR1A | Rev. | Data | | Da

									•		
301	2040.0	0.0	827.0	302	2147.5	0.0	827.0	303	2361.7	0.0	0.0
304	2361.7	0.0	91.9	305	2468.3	0.0	0.0	306	2468.3	0.0	91.9
307	2575.0	0.0	91.9	308	2361.7	0.0	183.8	309	2468.3	0.0	183.8
310	2575.0	0.0	183.8	311	2361.7	0.0	275.7	312	2468.3	0.0	275.7
313	2575.0	0.0	275.7	314	2361.7	0.0	367.6	315	2468.3	0.0	367.6
316	2575.0	0.0	367.6	317	2361.7	0.0	459.4	318	2468.3	0.0	459.4
319	2575.0	0.0	459.4	320	2361.7	0.0	551.3	321	2468.3	0.0	551.3
322	2575.0	0.0	551.3	323	2361.7	0.0	643.2	324	2468.3	0.0	643.2
325	2575.0	0.0	643.2	326	2361.7	0.0	735.1	327	2468.3	0.0	735.1
328	2575.0	0.0	735.1	329	2361.7	0.0	827.0	330	2468.3	0.0	827.0
331	2575.0	-200.0	241.0	332	2575.0	-346.0	241.0	333	2575.0	-1734.7	332.6
334	2575.0	-346.0	335.0	335	2575.0	-182.5	335.0	336	2575.0	-1457.0	0.0
337	2575.0	-1452.5	827.0	338	2468.3	-1635.0	422.7	339	2575.0	-133.3	0.0
340	2575.0	-133.3	84.2	341	2575.0	-200.0	80.3	342	2575.0	-66.7	0.0
343	2575.0	-66.7	88.0	344	2575.0	-133.3	168.4	345	2575.0	-200.0	160.7
346	2575.0	-66.7	176.1	347	2575.0	-133.3	252.6	348	2575.0	-66.7	264.1
349	2575.0	-120.8	335.0	350	2575.0	-125.0	442.1	351	2575.0	-182.5	433.4
352	2575.0	-62.5	450.8	353	2575.0	-125.0	538.3	354	2575.0	-182.5	531.8
355	2575.0	-62.5	544.8	356	2575.0	-125.0	634.5	357	2575.0	-182.5	630.2
358	2575.0	-62.5	638.9	359	2575.0	-125.0	730.8	360	2575.0	-182.5	728.6
361	2575.0	-62.5	732.9	362	2575.0	-125.0	827.0	363	2575.0	-62.5	827.0
364	2575.0	-273.0	241.0	365	2575.0	-273.0	335.0	366	2575.0	-1457.0	241.0
367	2575.0	-500.0	241.0	368	2575.0	-423.0	0.0	369	2575.0	-423.0	80.3
370	2575.0	-500.0	80.3	371	2575.0	-346.0	80.3	372	2575.0	-423.0	160.7
373	2575.0	-500.0	160.7	374	2575.0	-346.0	160.7	375	2575.0	-423.0	241.0
376 379	2575.0 2575.0	-500.0 -1029.2	335.0 0.0	377 380	2575.0 2575.0	-423.0 -1029.2	335.0 80.3	378 381	2575.0 2575.0	-1135.0 -1135.0	241.0 80.3
382	2575.0 2575.0	-1029.2 -923.3	0.0	383	2575.0 2575.0	-1029.2 -923.3	80.3	384	2575.0 2575.0	-1135.0 -817.5	0.0
385	2575.0	-923.3 -817.5	80.3	386	2575.0	-923.3 -711.7	0.0	387	2575.0	-617.5 -711.7	80.3
388	2575.0	-605.8	0.0	389	2575.0	-605.8	80.3	390	2575.0	-1029.2	160.7
391	2575.0	-1135.0	160.7	392	2575.0	-923.3	160.7	393	2575.0	-817.5	160.7
394	2575.0	-711.7	160.7	395	2575.0	-605.8	160.7	396	2575.0	-1029.2	241.0
397	2575.0	-923.3	241.0	398	2575.0	-817.5	241.0	399	2575.0	-711.7	241.0
400	2575.0	-605.8	241.0	401	2575.0	-1135.0	335.0	402	2575.0	-1029.2	335.0
403	2575.0	-923.3	335.0	404	2575.0	-817.5	335.0	405	2575.0	-711.7	335.0
406	2575.0	-605.8	335.0	407	2575.0	-1349.7	0.0	408	2575.0	-1349.7	80.3
409	2575.0	-1457.0	80.3	410	2575.0	-1242.3	0.0	411	2575.0	-1242.3	80.3
412	2575.0	-1349.7	160.7	413	2575.0	-1457.0	160.7	414	2575.0	-1242.3	160.7
415	2575.0	-1349.7	241.0	416	2575.0	-1242.3	241.0	417	2575.0	-1349.7	335.0
418	2575.0	-1242.3	335.0	419	2575.0	-1635.0	241.0	420	2575.0	-1546.0	0.0
421	2575.0	-1546.0	80.3	422	2575.0	-1635.0	80.3	423	2575.0	-1546.0	160.7
424	2575.0	-1635.0	160.7	425	2575.0	-1546.0	241.0	426	2575.0	-1546.0	335.0
427	2575.0	-1452.5	728.6	428	2575.0	-1546.0	433.4	429	1658.3	-1635.0	827.0
430	2575.0	-1452.5	630.2	431	2575.0	-1546.0	531.8	432	2575.0	-1635.0	531.8
433	2575.0	-1452.5	531.8	434	2575.0	-1546.0	630.2	435	2575.0	-1635.0	630.2
436	2575.0	-1452.5	433.4	437	2575.0	-1546.0	728.6	438	2575.0	-1635.0	728.6
439	2575.0	-1452.5	335.0	440	2575.0	-1546.0	827.0	441	1.56e-06	-200.0	0.0
442	-5.10e-06	-346.0	0.0	443	0.0	-62.5	356.7	444	0.0	-182.5	728.6
445	0.0	-200.0	241.0	446	0.0	-346.0	241.0	447	2575.0	-1834.4	408.8
448 451	0.0 3.78e-06	-346.0 -1452.5	335.0 827.0	449 452	0.0 0.0	-182.5 -133.3	827.0 0.0	450 453	0.0 0.0	-1457.0 -133.3	0.0 84.2
451	0.0	-1432.5	80.3	452 455	0.0	-133.3 -66.7	0.0	455 456	0.0	-133.3 -66.7	88.0
457	0.0	-133.3	168.4	458	0.0	-200.0	160.7	459	0.0	-66.7	176.1
460	0.0	-133.3	252.6	461	0.0	-66.7	264.1	462	-1.56e-06	-120.8	335.0
463	0.0	-125.0	442.1	464	0.0	-182.5	335.0	465	0.0	-62.5	450.8
466	0.0	-125.0	538.3	467	0.0	-182.5	433.4	468	0.0	-62.5	544.8
469	0.0	-125.0	634.5	470	0.0	-182.5	531.8	471	0.0	-62.5	638.9
472	0.0	-125.0	730.8	473	0.0	-182.5	630.2	474	0.0	-62.5	732.9
475	0.0	-125.0	827.0	476	0.0	-62.5	827.0	477	0.0	-273.0	241.0
478	0.0	-273.0	335.0	479	0.0	-1457.0	241.0	480	0.0	-423.0	0.0
481	0.0	-423.0	80.3	482	0.0	-346.0	80.3	483	0.0	-423.0	160.7
484	0.0	-346.0	160.7	485	0.0	-423.0	241.0	486	0.0	-423.0	335.0
487	0.0	-1029.2	0.0	488	0.0	-1029.2	80.3	489	0.0	-923.3	0.0
490	0.0	-923.3	80.3	491	0.0	-817.5	0.0	492	0.0	-817.5	80.3
493	0.0	-711.7	0.0	494	0.0	-711.7	80.3	495	0.0	-605.8	0.0
496	0.0	-605.8	80.3	497	0.0	-1029.2	160.7	498	0.0	-923.3	160.7
499	0.0	-817.5	160.7	500	0.0	-711.7	160.7	501	0.0	-605.8	160.7
502	0.0	-1029.2	241.0	503	0.0	-923.3	241.0	504	0.0	-817.5	241.0
505	0.0	-711.7	241.0	506	0.0	-605.8	241.0	507	0.0	-1029.2	335.0
508	0.0	-923.3	335.0	509	0.0	-817.5	335.0	510	0.0	-711.7	335.0
511	0.0	-605.8	335.0	512	0.0	-1349.7	0.0	513	0.0	-1349.7	80.3

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:
C51D_SR1A

Rev. Data

A Ottobre 2020

Pag. 26 di 109

514	0.0	-1457.0	80.3	515	0.0	-1242.3	0.0	516	0.0	-1242.3	80.3
517	0.0	-1349.7	160.7	518	0.0	-1457.0	160.7	519	0.0	-1242.3	160.7
520	0.0	-1349.7	241.0	521	0.0	-1242.3	241.0	522	0.0	-1349.7	335.0
523	0.0	-1242.3	335.0	524	0.0	-1546.0	0.0	525	0.0	-1546.0	80.3
526	0.0	-1546.0	160.7	527	0.0	-1546.0	241.0	528	0.0	-1546.0	335.0
529	3.78e-06	-1452.5	728.6	530	0.0	-1546.0	433.4	531	3.78e-06	-1452.5	630.2
532	0.0	-1546.0	531.8	533	3.78e-06	-1452.5	531.8	534	0.0	-1546.0	630.2
535	3.78e-06	-1452.5	433.4	536	0.0	-1546.0	728.6	537	3.78e-06	-1452.5	335.0
538	0.0	-1546.0	827.0	539	-1.77e-06	-273.0	0.0	540	-1.18e-06	-273.0	80.3
541	0.0	-273.0	160.7	542	0.0	-1135.0	80.3	543	0.0	-1135.0	160.7
544	0.0	-1135.0	241.0	545	0.0	-1135.0	335.0	546	0.0	-500.0	80.3
547	0.0	-500.0	160.7	548	0.0	-500.0	241.0	549	0.0	-500.0	335.0
550	3.78e-06	-1635.0	80.3	551	3.78e-06	-1635.0	160.7	552	3.78e-06	-1635.0	241.0
553 556	3.78e-06	-1635.0	331.9	554	2575.0	-1635.0	422.7	555 550	3.78e-06	-1635.0	531.8
556 559	3.78e-06 190.0	-1635.0 -1635.0	630.2 235.0	557 560	3.78e-06 365.0	-1635.0 -1635.0	728.6 235.0	558 561	90.0 511.0	-1635.0 -1635.0	235.0 235.0
562	90.0	-1635.0	78.3	563	90.0	-1635.0	156.7	564	320.0	-1635.0	235.0
565	255.0	-1635.0	0.0	566	255.0	-1635.0	78.3	567	190.0	-1635.0	78.3
568	320.0	-1635.0	78.3	569	255.0	-1635.0	156.7	570	190.0	-1635.0	156.7
571	320.0	-1635.0	156.7	572	255.0	-1635.0	235.0	573	365.0	-1635.0	78.3
574	365.0	-1635.0	156.7	575	642.5	-1635.0	235.0	576	1717.5	-1635.0	827.0
577	576.8	-1635.0	78.3	578	511.0	-1635.0	78.3	579	642.5	-1635.0	78.3
580	576.8	-1635.0	156.7	581	511.0	-1635.0	156.7	582	642.5	-1635.0	156.7
583	576.8	-1635.0	235.0	584	320.0	-1635.0	422.7	585	3.78e-06	-1635.0	422.7
586	642.5	-1635.0	422.7	587	965.0	-1635.0	422.7	588	1287.5	-1635.0	422.7
589	1610.0	-1635.0	422.7	590	1932.5	-1635.0	422.7	591	90.0	-1635.0	422.7
592	190.0	-1635.0	422.7	593	255.0	-1635.0	328.9	594	190.0	-1635.0	328.9
595	320.0	-1635.0	328.9	596	255.0	-1635.0	422.7	597	140.0	-1635.0	235.0
598	140.0	-1635.0	328.9	599	90.0	-1635.0	328.9	600	140.0	-1635.0	422.7
601	365.0	-1635.0	422.7	602	365.0	-1635.0	328.9	603	511.0	-1635.0	422.7
604	438.0	-1635.0	235.0	605	438.0	-1635.0	328.9	606	511.0	-1635.0	328.9
607	438.0	-1635.0	422.7	608	576.8	-1635.0	328.9	609	642.5	-1635.0	328.9
610	293.6	-1754.1	414.4	611	965.0	-1635.0	235.0	612	750.0	-1635.0	0.0
613	750.0	-1635.0	78.3	614	857.5	-1635.0	0.0	615	857.5	-1635.0	78.3
616	965.0	-1635.0	78.3	617	750.0	-1635.0	156.7	618	857.5	-1635.0	156.7
619	965.0	-1635.0	156.7	620	750.0	-1635.0	235.0	621	857.5	-1635.0	235.0
622	750.0	-1635.0	328.9	623	857.5 857.5	-1635.0	328.9	624	965.0	-1635.0	328.9
625 628	750.0 1658.3	-1635.0 -1635.0	422.7 728.6	626 629	857.5 1287.5	-1635.0 -1635.0	422.7 235.0	627 630	1658.3 577.0	-1635.0 -1635.0	630.2 0.0
631	1030.3	-1635.0	78.3	632	1180.0	-1635.0	0.0	633	1180.0	-1635.0	78.3
634	1287.5	-1635.0	78.3	635	1072.5	-1635.0	156.7	636	1180.0	-1635.0	156.7
637	1287.5	-1635.0	156.7	638	1072.5	-1635.0	235.0	639	1180.0	-1635.0	235.0
640	1072.5	-1635.0	328.9	641	1180.0	-1635.0	328.9	642	1287.5	-1635.0	328.9
643	1065.4	-1754.1	414.4	644	1180.0	-1635.0	422.7	645	1717.5	-1635.0	630.2
646	1717.5	-1635.0	728.6	647	1610.0	-1635.0	235.0	648	1395.0	-1635.0	0.0
649	1395.0	-1635.0	78.3	650	1502.5	-1635.0	0.0	651	1502.5	-1635.0	78.3
652	1610.0	-1635.0	78.3	653	1395.0	-1635.0	156.7	654	1502.5	-1635.0	156.7
655	1610.0	-1635.0	156.7	656	1395.0	-1635.0	235.0	657	1502.5	-1635.0	235.0
658	1395.0	-1635.0	328.9	659	1502.5	-1635.0	328.9	660	1610.0	-1635.0	328.9
661	1395.0	-1635.0	422.7	662	1502.5	-1635.0	422.7	663	1825.0	-1635.0	630.2
664	1825.0	-1635.0	728.6	665	1932.5	-1635.0	235.0	666	1717.5	-1635.0	0.0
667	1717.5	-1635.0	78.3	668	1825.0	-1635.0	0.0	669	1825.0	-1635.0	78.3
670	1932.5	-1635.0	78.3	671	1717.5	-1635.0	156.7	672	1825.0	-1635.0	156.7
673	1932.5	-1635.0	156.7	674	1717.5	-1635.0	235.0	675	1825.0	-1635.0	235.0
676	1717.5 1717.5	-1635.0 -1635.0	328.9 422.7	677	1825.0 1825.0	-1635.0	328.9 422.7	678	1932.5 2255.0	-1635.0	328.9
679 682	1932.5	-1635.0	630.2	680 683	2255.0	-1635.0 -1635.0	235.0	681 684	2040.0	-1635.0 -1635.0	0.0 0.0
685	2040.0	-1635.0	78.3	686	2147.5	-1635.0	0.0	687	2147.5	-1635.0	78.3
688	2255.0	-1635.0	78.3	689	2040.0	-1635.0	156.7	690	2147.5	-1635.0	156.7
691	2255.0	-1635.0	156.7	692	2040.0	-1635.0	235.0	693	2147.5	-1635.0	235.0
694	2040.0	-1635.0	328.9	695	2147.5	-1635.0	328.9	696	2255.0	-1635.0	328.9
697	2040.0	-1635.0	422.7	698	2147.5	-1635.0	422.7	699	2361.7	-1635.0	0.0
700	2361.7	-1635.0	79.0	701	2468.3	-1635.0	0.0	702	2468.3	-1635.0	79.7
703	2361.7	-1635.0	158.0	704	2468.3	-1635.0	159.3	705	2361.7	-1635.0	237.0
706	2468.3	-1635.0	239.0	707	2361.7	-1635.0	329.9	708	2468.3	-1635.0	330.9
709	2575.0	-1635.0	331.9	710	2361.7	-1635.0	422.7	711	2575.0	-2371.6	371.1
712	1990.0	-2371.6	371.1	713	1726.0	-2371.6	371.1	714	1582.7	-2371.6	371.1
715	1318.7	-2371.6	371.1	716	1005.8	-2371.6	371.1	717	861.8	-2371.6	371.1
718	774.9	-2371.6	371.1	719	630.9	-2371.6	371.1	720	517.3	-2371.6	371.1
721	185.0	-2371.6	371.1	722	353.3	-2371.6	371.1	723	85.0	-2371.6	371.1
724	5.48e-06	-2371.6	371.1	725	5.48e-06	-2461.6	371.1	726	293.6	-2371.6	371.1

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

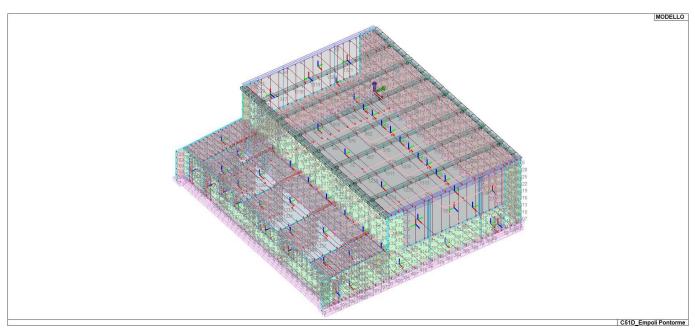
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

727	577.0	-2371.6	371.1	728	1065.4	-2371.6	371.1	729	1658.3	-2371.6	371.1
730	2255.0	-2371.6	371.1	731	2575.0	-2461.6	371.1	732	85.0	-2371.6	314.0
733	353.3	-2371.6	331.0	734	185.0	-2371.6	314.0	735	517.3	-2371.6	331.0
736	135.0	-2371.6	314.0	737	135.0	-2371.6	371.1	738	435.3	-2371.6	331.0
739	435.3	-2371.6	371.1	740	293.6	-2371.6	331.0	741	353.3	-2371.6	82.8
742	293.6	-2371.6	82.8	743	353.3	-2371.6	165.5	744	293.6	-2371.6	165.5
745	353.3	-2371.6	248.3	746	293.6	-2371.6	248.3	747	239.3	-2371.6	331.0
748	239.3	-2371.6	0.0	749	239.3	-2371.6	82.8	750	185.0	-2371.6	82.8
751	239.3	-2371.6	165.5	752	185.0	-2371.6	165.5	753	239.3	-2371.6	248.3
754 757	185.0	-2371.6 -2371.6	248.3	755 750	239.3	-2371.6	371.1	756 750	5.48e-06	-2461.6	74.2 148.5
757 760	5.48e-06 5.48e-06	-2371.6 -2461.6	74.2 222.7	758 761	5.48e-06 5.48e-06	-2461.6 -2371.6	148.5 222.7	759 762	5.48e-06 5.48e-06	-2371.6 -2461.6	296.9
763	5.48e-06	-2371.6	296.9	764	85.0	-2371.6	78.5	762 765	85.0	-2371.6	157.0
766	85.0	-2371.6	235.5	767	577.0	-2371.6	331.0	768	577.0	-2371.6	82.8
769	517.3	-2371.6	82.8	770	577.0	-2371.6	165.5	771	517.3	-2371.6	165.5
772	577.0	-2371.6	248.3	773	517.3	-2371.6	248.3	774	630.9	-2371.6	331.0
775	630.9	-2371.6	82.8	776	774.9	-2371.6	331.0	777	630.9	-2371.6	248.3
778	630.9	-2371.6	200.0	779	774.9	-2371.6	200.0	780	774.9	-2371.6	82.8
781	702.9	-2371.6	0.0	782	702.9	-2371.6	82.8	783	702.9	-2371.6	200.0
784	702.9	-2371.6	331.0	785	702.9	-2371.6	371.1	786	861.8	-2371.6	200.0
787	861.8	-2371.6	82.8	788	861.8	-2371.6	331.0	789	861.8	-2371.6	265.5
790	774.9	-2371.6	265.5	791	1932.5	-1635.0	728.6	792	1005.8	-2371.6	200.0
793	1005.8	-2371.6	82.8	794	1005.8	-2371.6	265.5	795	933.8	-2371.6	0.0
796	933.8	-2371.6	82.8	797	933.8	-2371.6	331.0	798	933.8	-2371.6	371.1
799	1005.8	-2371.6	331.0	800	1065.4	-2371.6	200.0	801	1065.4	-2371.6	82.8
802	1065.4	-2371.6	265.5	803	1065.4	-2371.6	331.0	804	2040.0	-1635.0	531.8
805	2255.0	-500.0 -2371.6	0.0	806	1318.7 1318.7	-2371.6	200.0	807	1318.7	-2371.6	82.8
808 811	1318.7 1149.8	-2371.6 -2371.6	265.5 82.8	809 812	1234.2	-2371.6 -2371.6	331.0 0.0	810 813	1149.8 1234.2	-2371.6 -2371.6	0.0 82.8
814	1149.8	-2371.6	200.0	815	1234.2	-2371.6	200.0	816	1149.8	-2371.6	265.5
817	1234.2	-2371.6	265.5	818	1149.8	-2371.6	331.0	819	1234.2	-2371.6	331.0
820	1149.8	-2371.6	371.1	821	1234.2	-2371.6	371.1	822	1582.7	-2371.6	200.0
823	1582.7	-2371.6	82.8	824	1582.7	-2371.6	265.5	825	1582.7	-2371.6	331.0
826	1406.7	-2371.6	0.0	827	1406.7	-2371.6	82.8	828	1494.7	-2371.6	0.0
829	1494.7	-2371.6	82.8	830	1406.7	-2371.6	200.0	831	1494.7	-2371.6	200.0
832	1406.7	-2371.6	331.0	833	1406.7	-2371.6	371.1	834	1494.7	-2371.6	331.0
835	1494.7	-2371.6	371.1	836	1658.3	-2371.6	200.0	837	1658.3	-2371.6	82.8
838	1658.3	-2371.6	265.5	839	1658.3	-2371.6	331.0	840	1726.0	-2371.6	200.0
841	1726.0	-2371.6	82.8	842	1726.0	-2371.6	265.5	843	1726.0	-2371.6	331.0
844	1990.0	-2371.6 -2371.6	200.0	845	1990.0	-2371.6	82.8	846	1990.0	-2371.6	265.5
847 850	1990.0 1902.0	-2371.6 -2371.6	331.0 331.0	848 851	1814.0 1902.0	-2371.6 -2371.6	331.0 371.1	849 852	1814.0 1814.0	-2371.6 -2371.6	371.1 0.0
853	1814.0	-2371.6 -2371.6	82.8	854	1902.0	-2371.6 -2371.6	0.0	855	1902.0	-2371.6 -2371.6	82.8
856	1814.0	-2371.6	200.0	857	1902.0	-2371.6	200.0	858	2255.0	-2371.6	200.0
859	2255.0	-2371.6	82.8	860	2255.0	-2371.6	265.5	861	2255.0	-2371.6	331.0
862	2078.4	-2371.6	0.0	863	2078.4	-2371.6	82.8	864	2166.7	-2371.6	0.0
865	2166.7	-2371.6	82.8	866	2078.4	-2371.6	200.0	867	2166.7	-2371.6	200.0
868	2078.4	-2371.6	265.5	869	2166.7	-2371.6	265.5	870	2078.4	-2371.6	331.0
871	2166.7	-2371.6	331.0	872	2078.4	-2371.6	371.1	873	2166.7	-2371.6	371.1
874	1610.0	-500.0	0.0	875	2575.0	-2371.6	200.0	876	2575.0	-2371.6	82.8
877	2575.0	-2371.6	265.5	878	2575.0	-2371.6	331.0	879	2361.7	-2371.6	0.0
880	2361.7	-2371.6	82.8	881	2468.3	-2371.6	0.0	882	2468.3	-2371.6	82.8
883	2361.7	-2371.6	200.0	884	2468.3	-2371.6	200.0	885	2361.7	-2371.6	265.5
886	2468.3 2361.7	-2371.6	265.5	887	2361.7	-2371.6	331.0	888	2468.3	-2371.6	331.0
889 892	2575.0	-2371.6 -2331.6	371.1 314.0	890 893	2468.3 2575.0	-2371.6 -2331.6	371.1 200.0	891 894	2575.0 2575.0	-2233.3 -2331.6	314.0 82.8
895	2575.0	-2331.6	265.5	896	2575.0	-2461.6	200.0	897	2575.0	-2461.6	82.8
898	2575.0	-2461.6	265.5	899	2575.0	-2461.6	314.0	900	1287.5	-204.4	827.0
901	1287.5	-408.8	827.0	902	965.0	-204.4	827.0	903	965.0	-1430.6	827.0
904	642.5	-1226.3	827.0	905	293.6	-1972.9	0.0	906	293.6	-1972.9	79.8
907	1610.0	-1226.3	827.0	908	293.6	-2072.6	0.0	909	293.6	-2072.6	78.4
910	293.6	-2172.3	0.0	911	293.6	-2172.3	77.0	912	293.6	-2272.0	0.0
913	293.6	-2272.0	75.6	914	293.6	-1972.9	399.1	915	293.6	-1972.9	159.6
916	1610.0	-1021.9	827.0	917	293.6	-2072.6	156.8	918	293.6	-2172.3	154.0
919	293.6	-2272.0	151.3	920	293.6	-2072.6	392.1	921	293.6	-1972.9	239.4
922	293.6	-1881.6	405.5	923	293.6	-2072.6	235.3	924	293.6	-2172.3	231.1
925 928	293.6 293.6	-2272.0 -1881.6	226.9 0.0	926 929	293.6 293.6	-2172.3 -2072.6	385.1 313.7	927 930	293.6 293.6	-1972.9 -2172.3	319.3 308.1
926	293.6 293.6	-1001.0	302.5	932	293.6 293.6	-2072.6 -2272.0	378.1	930	293.6 965.0	-2172.3 -500.0	0.0
934	577.0	-1972.9	0.0	935	577.0	-1972.9	79.8	936	293.6	-1881.6	81.1
937	577.0	-2072.6	0.0	938	577.0	-2072.6	78.4	939	577.0	-2172.3	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

940	577.0	-2172.3	77.0	941	577.0	-2272.0	0.0	942	577.0	-2272.0	75.6
943	577.0	-1972.9	399.1	944	577.0	-1972.9	159.6	945	293.6	-1881.6	162.2
946	577.0	-2072.6	156.8	947	577.0	-2172.3	154.0	948	577.0	-2272.0	151.3
949	577.0	-2072.6	392.1	950	577.0	-1972.9	239.4	951	293.6	-1881.6	243.3
952	577.0	-2072.6	235.3	953	577.0	-2172.3	231.1	954	577.0	-2272.0	226.9
955	577.0	-2172.3	385.1	956	577.0	-1972.9	319.3	957	293.6	-1881.6	324.4
958	577.0	-2072.6	313.7	959	577.0	-2172.3	308.1	960	577.0	-2272.0	302.5
961	577.0	-2272.0	378.1	962	320.0	-500.0	0.0	963	2255.0	-1135.0	0.0
964	1610.0	-1135.0	0.0	965	1065.4	-1972.9	0.0	966	1065.4	-1972.9	79.8
967	1287.5	-1430.6	827.0	968	1065.4	-2072.6	0.0	969	1065.4	-2072.6	78.4
970	1065.4	-2172.3	0.0	971	1065.4	-2172.3	77.0	972	1065.4	-2272.0	0.0
973	1065.4	-2272.0	75.6	974	1065.4	-1972.9	399.1	975	1065.4	-1972.9	159.6
976	1287.5	-1226.3	827.0	977	1065.4	-2072.6	156.8	978	1065.4	-2172.3	154.0
979	1065.4	-2272.0	151.3	980	1065.4	-2072.6	392.1	981	1065.4	-1972.9	239.4
982	1287.5	-1021.9	827.0	983	1065.4	-2072.6	235.3	984	1065.4	-2172.3	231.1
985	1065.4	-2272.0	226.9	986	1065.4	-2172.3	385.1	987	1065.4	-1972.9	319.3
988	1287.5	-817.5	827.0	989	1065.4	-2072.6	313.7	990	1065.4	-2172.3	308.1
991	1065.4	-2272.0	302.5	992	1065.4	-2272.0	378.1	993	965.0	-1135.0	0.0
994	320.0	-1135.0	0.0	995	642.5	-500.0	0.0	996	1287.5	-500.0	0.0
997	1932.5	-500.0	0.0	998	1658.3	-1972.9	0.0	999	1658.3	-1972.9	79.8
1000	965.0	-1226.3	827.0	1001	1658.3	-2072.6	0.0	1002	1658.3	-2072.6	78.4
1003	1658.3	-2172.3	0.0	1004	1658.3	-2172.3	77.0	1005	1658.3	-2272.0	0.0
1006	1658.3	-2272.0	75.6	1007	1658.3	-1972.9	399.1	1008	1658.3	-1972.9	159.6
1009	965.0	-1021.9	827.0	1010	1658.3	-2072.6	156.8	1011	1658.3	-2172.3	154.0
1012	1658.3	-2272.0	151.3	1013	1658.3	-2072.6	392.1	1014	1658.3	-1972.9	239.4
1015	965.0	-817.5	827.0	1016	1658.3	-2072.6	235.3	1017	1658.3	-2172.3	231.1
1013	1658.3	-2272.0	226.9	1010	1658.3	-2172.3	385.1	1020	1658.3	-1972.9	319.3
1018	965.0	-613.1	827.0	1019	1658.3	-2172.3	313.7	1020	1658.3	-1972.9	308.1
1024	1658.3	-2272.0	302.5	1025	1658.3	-2272.0	378.1	1026	1932.5	-1135.0	0.0
1027	1287.5	-1135.0	0.0	1028	642.5	-1135.0	0.0	1029	293.6	-1635.0	0.0
1030	933.8	-2371.6	200.0	1031	2255.0	-1972.9	0.0	1032	2255.0	-1972.9	79.8
1033	642.5	-1021.9	827.0	1034	2255.0	-2072.6	0.0	1035	2255.0	-2072.6	78.4
1036	2255.0	-2172.3	0.0	1037	2255.0	-2172.3	77.0	1038	2255.0	-2272.0	0.0
1039	2255.0	-2272.0	75.6	1040	2255.0	-1972.9	399.1	1041	2255.0	-1972.9	159.6
1042	642.5	-817.5	827.0	1043	2255.0	-2072.6	156.8	1044	2255.0	-2172.3	154.0
1045	2255.0	-2272.0	151.3	1046	2255.0	-2072.6	392.1	1047	2255.0	-1972.9	239.4
1048	642.5	-613.1	827.0	1049	2255.0	-2072.6	235.3	1050	2255.0	-2172.3	231.1
1051	2255.0	-2272.0	226.9	1052	2255.0	-2172.3	385.1	1053	2255.0	-1972.9	319.3
1054	642.5	-408.8	827.0	1055	2255.0	-2072.6	313.7	1056	2255.0	-2172.3	308.1
1057	2255.0	-2272.0	302.5	1058	2255.0	-2272.0	378.1	1059	2575.0	-2233.3	0.0
1060	2575.0	-2331.6	0.0	1061	2575.0	-2282.4	314.0	1062	2575.0	-2282.4	377.4
1063	2575.0	-2133.6	0.0	1064	2575.0	-2133.6	77.6	1065	2575.0	-2233.3	76.2
1066	2575.0	-2033.8	0.0	1067	2575.0	-2033.8	79.0	1068	2575.0	-1934.1	0.0
1069	2575.0	-1934.1	80.4	1070	2575.0	-1834.4	0.0	1071	2575.0	-1834.4	81.8
1072	2575.0	-1734.7	0.0	1073	2575.0	-1734.7	83.1	1074	2575.0	-2133.6	387.8
1075	2575.0	-2133.6	155.1	1076	2575.0	-2233.3	152.3	1077	2575.0	-2033.8	157.9
1078	2575.0	-1934.1	160.7	1079	2575.0	-1834.4	163.5	1080	2575.0	-1734.7	166.3
1081	2575.0	-2033.8	394.8	1082	2575.0	-2133.6	232.7	1083	2575.0	-2233.3	228.5
1084	2575.0	-2033.8	236.9	1085	2575.0	-1934.1	241.1	1086	2575.0	-1834.4	245.3
1087	2575.0	-1734.7	249.4	1088	2575.0	-1934.1	401.8	1089	2575.0	-2133.6	310.3
1090	2575.0	-1734.7	415.7	1091	2575.0	-2033.8	315.8	1092	2575.0	-1934.1	321.4
1093	2575.0	-1834.4	327.0	1091	3.99e-06	-1727.1	0.0	1092	3.99e-06	-1727.1	83.3
1096	4.63e-06	-2003.3	396.9	1094	4.20e-06	-1819.2	0.0	1093		-1819.2	82.0
									4.20e-06		
1099	4.41e-06	-1911.2	0.0	1100	4.41e-06	-1911.2	80.7	1101	4.63e-06	-2003.3	0.0
1102	4.63e-06	-2003.3	79.4	1103	4.84e-06	-2095.4	0.0	1104	4.84e-06	-2095.4	78.1
1105	5.05e-06	-2187.5	0.0	1106	5.05e-06	-2187.5	76.8	1107	5.27e-06	-2279.6	0.0
1108	5.27e-06	-2279.6	75.5	1109	3.99e-06	-1727.1	166.5	1110	4.84e-06	-2095.4	390.5
1111	4.20e-06	-1819.2	163.9	1112	4.41e-06	-1911.2	161.4	1113	4.63e-06	-2003.3	158.8
1114	4.84e-06	-2095.4	156.2	1115	5.05e-06	-2187.5	153.6	1116	5.27e-06	-2279.6	151.0
1117	3.99e-06	-1727.1	249.8	1118	5.05e-06	-2187.5	384.0	1119	4.20e-06	-1819.2	245.9
1120	4.41e-06	-1911.2	242.0	1121	4.63e-06	-2003.3	238.2	1122	4.84e-06	-2095.4	234.3
1123	5.05e-06	-2187.5	230.4	1124	5.27e-06	-2279.6	226.6	1125	3.99e-06	-1727.1	333.0
1126	5.27e-06	-2279.6	377.6	1127	4.20e-06	-1819.2	327.9	1128	4.41e-06	-1911.2	322.7
1129	4.63e-06	-2003.3	317.5	1130	4.84e-06	-2095.4	312.4	1131	5.05e-06	-2187.5	307.2
1132	5.27e-06	-2279.6	302.1	1133	3.99e-06	-1727.1	416.3	1134	4.20e-06	-1819.2	409.8
1135	4.41e-06	-1911.2	403.4	1136	293.6	-1635.0	422.7	1137	577.0	-1635.0	422.7
1138	1065.4	-1635.0	422.7	1139	1658.3	-1635.0	422.7	1140	1065.4	-1635.0	0.0
1141	577.0	-1754.1	414.4	1142	1658.3	-1754.1	414.4	1143	2255.0	-1754.1	414.4
1144	1658.3	-1635.0	0.0	1145	320.0	-1635.0	531.8	1146	320.0	-1635.0	630.2
1147	320.0	-1635.0	728.6	1148	90.0	-1635.0	531.8	1149	140.0	-1635.0	531.8
1150	190.0	-1635.0	531.8	1151	255.0	-1635.0	531.8	1152	293.6	-1635.0	531.8
					_00.0				_00.0		-55


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

1153	90.0	-1635.0	630.2	1154	140.0	-1635.0	630.2	1155	190.0	-1635.0	630.2
1156	255.0	-1635.0	630.2	1157	293.6	-1635.0	630.2	1158	90.0	-1635.0	728.6
1159	140.0	-1635.0	728.6	1160	190.0	-1635.0	728.6	1161	255.0	-1635.0	728.6
1162	293.6	-1635.0	728.6	1163	90.0	-1635.0	827.0	1164	140.0	-1635.0	827.0
1165	190.0	-1635.0	827.0	1166	255.0	-1635.0	827.0	1167	293.6	-1635.0	827.0
1168	642.5	-1635.0	531.8	1169	965.0	-1635.0	531.8	1170	1287.5	-1635.0	531.8
1171	1610.0	-1635.0	531.8	1172	1932.5	-1635.0	531.8	1173	2255.0	-1635.0	531.8
1174	365.0	-1635.0	531.8	1175	511.0	-1635.0	531.8	1176	438.0	-1635.0	531.8
1177	577.0	-1635.0	531.8	1178	365.0	-1635.0	827.0	1179	511.0	-1635.0	827.0
1180	438.0	-1635.0	827.0	1181	577.0	-1635.0	827.0	1182	365.0	-1635.0	630.2
1183	365.0	-1635.0	728.6	1184	438.0	-1635.0	630.2	1185	438.0	-1635.0	728.6
1186	511.0	-1635.0	630.2	1187	511.0	-1635.0	728.6	1188	577.0	-1635.0	630.2
1189	577.0	-1635.0	728.6	1190	642.5	-1635.0	630.2	1191	642.5	-1635.0	728.6
1192	750.0	-1635.0	531.8	1193	857.5	-1635.0	531.8	1194	750.0	-1635.0	630.2
1195	857.5	-1635.0	630.2	1196	965.0	-1635.0	630.2	1197	750.0	-1635.0	728.6
1198	857.5	-1635.0	728.6	1199	965.0	-1635.0	728.6	1200	750.0	-1635.0	827.0
1201	857.5	-1635.0	827.0	1202	1180.0	-1635.0	531.8	1203	1065.4	-1635.0	531.8
1204	1180.0	-1635.0	827.0	1205	1065.4	-1635.0	827.0	1206	1065.4	-1635.0	630.2
1207	1065.4	-1635.0	728.6	1208	1180.0	-1635.0	630.2	1209	1180.0	-1635.0	728.6
1210	1287.5 1502.5	-1635.0	630.2 531.8	1211 1214	1287.5 1395.0	-1635.0 -1635.0	728.6 630.2	1212 1215	1395.0	-1635.0 -1635.0	531.8 630.2
1213 1216	1610.0	-1635.0 -1635.0	630.2	1214	1395.0	-1635.0	728.6	1213	1502.5 1502.5	-1635.0	728.6
1210	1610.0	-1635.0	728.6	1217	1395.0	-1635.0	827.0	1216	1502.5	-1635.0	827.0
1219	1717.5	-1635.0	531.8	1223	1825.0	-1635.0	531.8	1221	1658.3	-1635.0	531.8
1225	293.6	-1657.0	421.2	1223	3.78e-06	-1657.0	421.2	1227	577.0	-1657.0	421.2
1228	1065.4	-1657.0	421.2	1229	2255.0	-1657.0	421.2	1230	1658.3	-1657.0	421.2
1231	2575.0	-1657.0	421.2	1232	2255.0	-408.8	827.0	1233	2255.0	-1226.3	827.0
1234	2255.0	-1430.6	827.0	1235	1932.5	-1021.9	827.0	1236	577.0	-2003.3	79.4
1237	1610.0	-817.5	827.0	1238	1932.5	-1430.6	827.0	1239	293.6	-2349.6	372.0
1240	577.0	-2349.6	372.0	1241	1065.4	-2349.6	372.0	1242	1658.3	-2349.6	372.0
1243	2255.0	-2349.6	372.0	1244	4.63e-06	-2349.6	372.0	1245	293.6	-2349.6	0.0
1246	293.6	-2349.6	331.0	1247	293.6	-2349.6	82.8	1248	293.6	-2349.6	165.5
1249	293.6	-2349.6	248.3	1250	577.0	-2349.6	0.0	1251	577.0	-2349.6	331.0
1252	577.0	-2349.6	82.8	1253	577.0	-2349.6	165.5	1254	577.0	-2349.6	248.3
1255	1065.4	-2349.6	0.0	1256	1065.4	-2349.6	200.0	1257	1065.4	-2349.6	82.8
1258	1065.4	-2349.6	265.5	1259	1065.4	-2349.6	331.0	1260	1658.3	-2349.6	0.0
1261	1658.3	-2349.6	200.0	1262	1658.3	-2349.6	82.8	1263	1658.3	-2349.6	265.5
1264	1658.3	-2349.6	331.0	1265	2255.0	-2349.6	0.0	1266	2255.0	-2349.6	200.0
1267	2255.0	-2349.6	82.8	1268	2255.0	-2349.6	265.5	1269	2255.0	-2349.6	331.0
1270	577.0	-2003.3	158.8	1271	293.6	-2003.3	396.9	1272	577.0	-2003.3	396.9
1273	1065.4	-2003.3	396.9	1274	1658.3	-2003.3	396.9	1275	2255.0	-2003.3	0.0
1276	2255.0	-2003.3	396.9	1277	2255.0	-2003.3	79.4	1278	2255.0	-2003.3	158.8
1279	2255.0	-2003.3	238.2	1280	2255.0	-2003.3	317.5	1281	577.0	-2003.3	238.2
1282 1285	1658.3 1658.3	-2003.3 -2003.3	79.4	1283 1286	1658.3 577.0	-2003.3 -2003.3	158.8 317.5	1284 1287	1658.3 293.6	-2003.3 -2003.3	238.2 158.8
1288	1056.5	-2003.3	317.5 79.4	1289	1065.4	-2003.3	158.8	1290	1065.4	-2003.3	238.2
1200	1065.4	-2003.3	317.5	1209	293.6	-2003.3	238.2	1293	293.6	-2003.3	317.5
1294	293.6	-2003.3	79.4	1295	2575.0	-2003.3	0.0	1296	2575.0	-2003.3	396.9
1297	2575.0	-2003.3	79.4	1298	2575.0	-2003.3	158.8	1299	2575.0	-2003.3	238.2
1300	2575.0	-2003.3	317.5	1301	1610.0	-204.4	827.0	1302	1065.4	-2003.3	0.0
1303	1658.3	-2003.3	0.0	1304	293.6	-2003.3	0.0	1305	577.0	-2003.3	0.0
1306	2255.0	-204.4	827.0	1307	2255.0	-817.5	827.0	1308	1932.5	-204.4	827.0
1309	1932.5	-613.1	827.0	1310	1610.0	-408.8	827.0	1311	1932.5	-1226.3	827.0
1312	2255.0	-613.1	827.0	1313	2255.0	-1021.9	827.0	1314	1932.5	-408.8	827.0
1315	1932.5	-817.5	827.0	1316	1610.0	-613.1	827.0	1317	320.0	-1430.6	827.0
1318	320.0	-1226.3	827.0	1319	320.0	-1021.9	827.0	1320	320.0	-817.5	827.0
1321	320.0	-613.1	827.0	1322	320.0	-408.8	827.0	1323	320.0	-204.4	827.0
1324	577.0	-1881.6	405.5	1325	577.0	-1881.6	0.0	1326	577.0	-1881.6	81.1
1327	577.0	-1881.6	162.2	1328	577.0	-1881.6	243.3	1329	577.0	-1881.6	324.4
1330	1065.4	-1881.6	405.5	1331	1065.4	-1881.6	0.0	1332	1065.4	-1881.6	81.1
1333	1065.4	-1881.6	162.2	1334	1065.4	-1881.6	243.3	1335	1065.4	-1881.6	324.4
1336	1658.3	-1881.6	405.5	1337	1658.3	-1881.6	0.0	1338	1658.3	-1881.6	81.1
1339	1658.3	-1881.6	162.2	1340	1658.3	-1881.6	243.3	1341	1658.3	-1881.6	324.4
1342	2255.0	-1881.6	405.5	1343	2255.0	-1881.6	0.0	1344	2255.0	-1881.6	81.1
1345 1348	2255.0 2255.0	-1881.6 -1844.6	162.2 408.0	1346 1349	2255.0 2255.0	-1881.6 -1844.6	243.3	1347 1350	2255.0 2255.0	-1881.6 -1844.6	324.4
1346	2255.0 2255.0	-1844.6 -1844.6	163.2	1349	2255.0 2255.0	-1844.6 -1844.6	0.0 244.8	1350	2255.0 2255.0	-1844.6 -1844.6	81.6 326.4
1331	2200.0	-1044.0	103.2	1002	2200.0	-1044.0	Z 44 .0	1555	2200.0	-1044.0	320.4

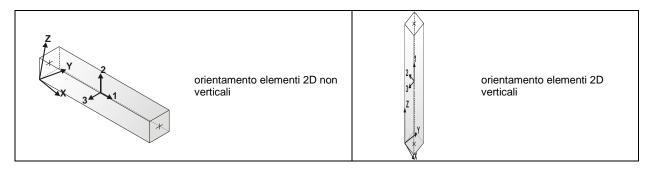
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 30 di 109				

14_MOD_NUMERAZIONE_NODI

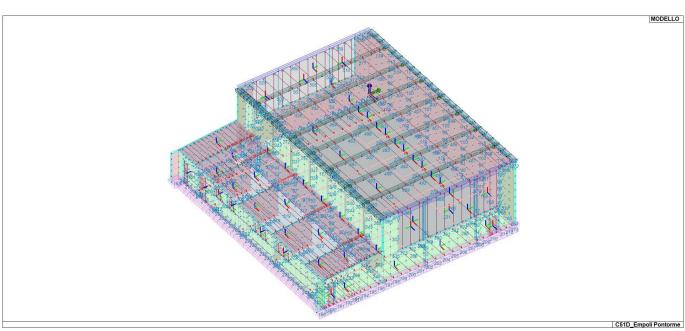
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

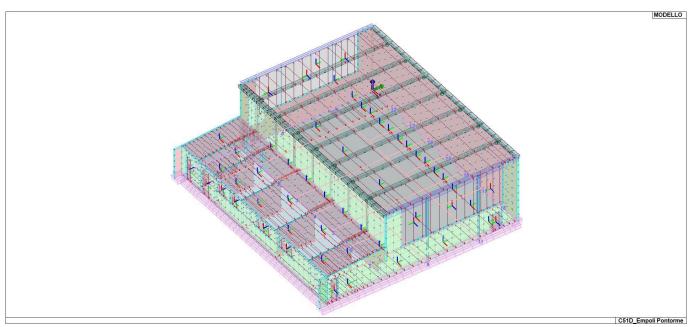

Docume	Documento:				
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 31 di 109					

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE TABELLA DATI TRAVI

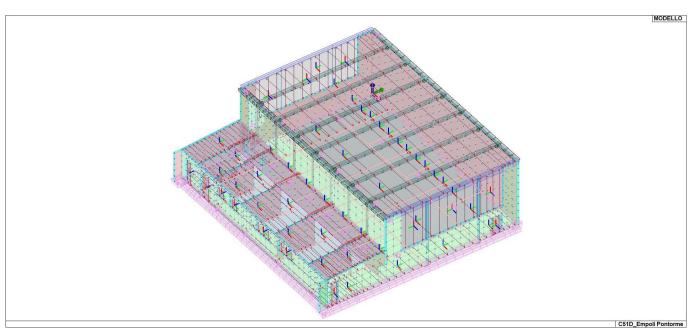
Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.


Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

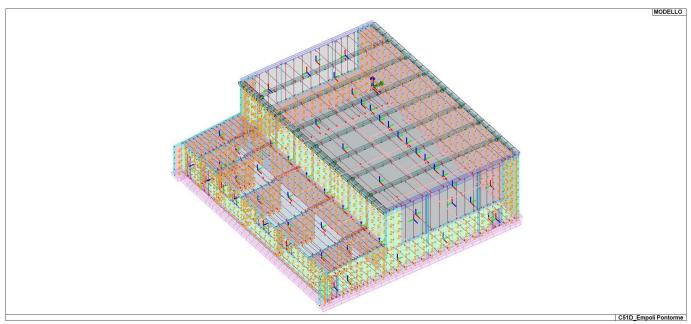

In particolare per ogni elemento viene indicato in tabella:

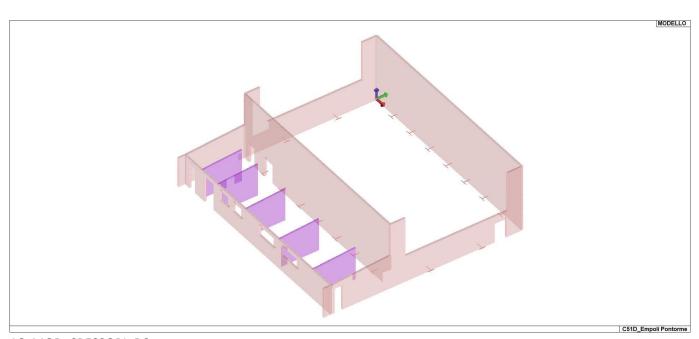
artioolaro por ogrii ol	cinente viene indicate in tabella.
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo
Svincolo I (J) codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i nodo finale (il valore 1 indica che la relativa azione interna non è attiva)	
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pa	ag. 32 di 109				
13 2 2 2 2 2 2					


15_MOD_NUMERAZIONE_D2_PILASTRATE


15_MOD_NUMERAZIONE_D2_TRAVATE

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 33 di 109				

16_MOD_NUMERAZIONE_D3_PARETI

16_MOD_SPESSORI_D3

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 34 di 109				

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-**PANNELLO**

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.
L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

Id.Arch.	Identificativo dell' archivio			
Tipo	Tipo di carico			
·	Variab. Carico variabile generico			
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)			
	Neve Carico di neve			
G1k	carico permanente (comprensivo del peso proprio)			
G2k	carico permanente non strutturale e non compiutamente definito			
Qk	carico variabile			
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."			
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento")			
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro			
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente			
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente			
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizione delle masse sismiche			
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici			

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemento			
Tipo	codice di comportamento			
	S elemento utilizzato solo per scarico			
	c elemento utilizzato per scarico e per modellazione piano rigido			
	P elemento utilizzato come pannello			
	M scarico monodirezionale			
	B scarico bidirezionale			
ld.Arch.	Identificativo dell' archivio			
Mat	codice del materiale assegnato all'elemento			
Spessore	spessore dell'elemento (costante)			
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali			
Gk	carico permanente solaio (comprensivo del peso proprio)			
Qk	carico variabile solaio			
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)			

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particulars i simboli utilizzati in taballa assumana il assurante significato:

in particolare i simboli	utilizzati in tabella assumono il seguente significato:	
Elem.	numero identificativo dell'elemento	
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali	
Note Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);		
Pos.	Ascissa del punto di verifica	
F ist, F infi	Frecce instantanee e a tempo infinito	
Momento	Momento flettente	
Taglio	Taglio Sollecitazione di taglio	
Af inf.	Area di armatura longitudinale posta all'intradosso della trave	
Af sup.	Area di armatura longitudinale posta all'estradosso della trave	
AfV	Area dell'armatura atta ad assorbire le azioni di taglio	
7	, to a don all later and adoption of a all of the angle	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

ID Arch.

Tipo

G1k

G2k

Qk

Fatt. A

s sis.

Psi 0

964

Psi 1

Psi 2

Psi S 2

Fatt. Fi

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 35 di 109				

Beff	Base della sezione di cls per l'assorbimento del taglio
	simboli utilizzati con il metodo delle tensioni ammissibili:
sc max	Massima tensione di compressione del calcestruzzo
sf max	Massima tensione nell'acciaio
tau max	Massima tensione tangenziale nel cls
	simboli utilizzati con il metodo degli stati limite:
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione
	(per sola flessione)
verif.	rapporto Sd/Su con sollecitazioni ultime proporzionali:
	valore minore o uguale a 1 per verifica positiva
Verif.V	rapporto Sd/Su con sollecitazioni taglianti proporzionali
	valore minore o uguale a 1 per verifica positiva
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni frequenti [normalizzato a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti [normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti [normalizzato a 1]
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi permanenti Inormalizzato a 11
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	
	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]

		Ach	I/cm2	daN/cm2	daN/c	m2							
1	Neve		De-03	8.00e-03	8.00e			1.00	0.50	0.20	0.0	0.0	1.00
2	Neve		De-03	8.00e-03	8.00e			1.00	0.50	0.20	0.0	0.0	1.00
3	Variab.		De-02	1.45e-02	5.00e			1.00	0.70	0.70	0.60	0.60	1.00
4	Variab.	3.90	0e-02	1.55e-02	4.00e	-02		1.00	0.70	0.70	0.60	0.60	1.00
Elem.	Tipo ID A	rch.	Mat.	SpessoreO	rditura		G2k		Nodo 1/6 N	lodo 2/7 N	lodo 3/8	Nodo	Nodo
		_	_			daN/cm2							
1	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	27	28	565	1029	22
									994	44	515	512	450
									524	26			
2	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	994	962	42	495	493
									491	489	487	44	
3	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	962	18	102	99	1
									455	452	441	539	442
									480	42		000	
4	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	29	30	630	59	1028
	Olvi	Ü		4.0	0.0	0.000 02	1.400 02	0.000 02	994	22	000	00	1020
5	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5 000 02	1028	993	933	995	962
3	Civi	3	111=1	4.0	0.0	3.006-02	1.436-02	3.00 0- 02	994	993	933	993	902
6	CM	3	1	4.0	0.0	2 000 02	1 450 00	5.00e-02		40	137	125	18
6	CIVI	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00 e- 02	995	48	137	135	10
_	014	_		4.0			4 45 00		962	044	0.4	000	4000
7	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	612	614	61	993	1028
_		_							59				
8	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	933	50	165	163	48
									995				
9	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	1140	632	63	1027	993
									61				
10	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	1027	964	874	996	933
									993				
11	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	996	52	193	191	50
									933				
12	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	648	650	65	964	1027
	O.V.	Ū			0.0	0.000 02	1.100 02	0.000 02	63	000	00	001	.02.
13	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	874	54	221	219	52
13	Olvi	3	111-1	4.0	0.0	3.000 02	1.400 02	3.000 02	996	34	221	213	32
14	СМ	3	m_1	4.0	0.0	3.80e-02	1.45e-02	5 000 02	1144	666	668	67	1026
14	Civi	3	m=1	4.0	0.0	3.00 0- 02	1.406-02	5.00 0- 02	964	65	000	67	1026
15	CNA	2	4	4.0	0.0	2 000 02	1 450 00	E 000 00			905	007	074
15	CM	3	m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	1026	963	805	997	874

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Pag. 36 di 109

16	СМ	3 m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	997	56	249	247	54
17	СМ	3 m=1	4.0	0.0	3.80e-02	1.45e-02		874 684	686	681	963	1026
								67				
18	СМ	3 m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	805 997	20	277	275	56
19	CM	3 m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	699	701	31	420	336
20	СМ	3 m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	407 46	410 379	46 382	963 384	681 386
		01		0.0	0.000 02	1.100 02	0.000 02	388	74	805	963	
21	CM	3 m=1	4.0	0.0	3.80e-02	1.45e-02	5.00e-02	74	368	69	58	339
								342 805	2	305	303	20
22	CM	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	55	57	80	1234	1233
								1313 78	1307 302	1312 301	1232 90	1306 1308
								1314	1309	1315	1235	1311
								1238	96			
23	CM	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	429 1311	576 1235	73 1315	96 1309	1238 1314
								1308	90	274	273	89
								1301	1310	1316	1237	916
24	СМ	1 111	12.0	0.0	6.000.00	0.000.00	0.000.00	907	32	95 05	20	007
24	Civi	1 m=144	12.0	0.0	6.00e-03	8.00e-03	6.00 e- 03	1220 916	1221 1237	95 1316	32 1310	907 1301
								89	246	245	88	900
								901	34	988	982	976
25	СМ	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	967 45	94 47	82	440	337
								85	98	97	362	363
								76	330	329	78	1306
								1232 1234	1312 80	1307	1313	1233
26	CM	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	1178	1180	1179	1181	92
								40	904	1033	1042	1048
								1054 77	38 1323	86 1322	162 1321	161 1320
								1319	1318	1317	79	1020
27	CM	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	1200	1201	93	903	1000
								1009 87	1015 190	1021 189	36 86	902 38
								1054	1048	1042	1033	904
00	CNA	4 444	40.0	0.0	0.0000	0.0000	0.0000	40	92	0.4	007	070
28	CM	1 m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	1205 982	1204 988	94 34	967 901	976 900
								88	218	217	87	902
								36	1021	1015	1009	1000
29	СМ	2 m=1	5.0	0.0	3.80e-02	8.00e-03	8.00e-03	903 723	93 737	721	755	726
_0			0.0	0.0	0.000 02	0.000	0.000	932	926	920	1271	914
								922	610	1136	596	592
								600 1135	591 1096	585 1110	1133 1118	1134 1126
								724				
30	CM	2 m=1	5.0	0.0	3.80e-02	8.00e-03	8.00e-03	722 055	739	720	727	961
								955 1141	949 1137	1272 603	943 607	1324 601
								584	1136	610	922	914
24	CNA	0 m 1	F 0	0.0	2 000 02	0.000.00	0.000.00	1271	920	926	932	726
31	CM	2 m=1	5.0	0.0	3.60e-02	8.00e-03	6.00 e- 03	719 716	785 728	718 992	717 986	798 980
								1273	974	1330	643	1138
								587 1141	626	625	586	1137
								1141 955	1324 961	943 727	1272	949
32	CM	2 m=1	5.0	0.0	3.80e-02	8.00e-03	8.00e-03	820	821	715	833	835
								714	729	1025	1019	1013
								1274 589	1007 662	1336 661	1142 588	1139 644
								1138	643	1330	974	1273
								980	986	992	728	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

33	CM	2	m=1	5.0	0.0	3.80e-02	8.00e-03	8.00e-03	713	849	851	712	872
									873	730	1058	1052	1046
									1276	1040	1342	1348	1143
									24	698	697	590	680
									679	1139	1142	1336	1007
0.4	014	0	4	5 0	0.0	0.0000	0.0000	0.0000	1274	1013	1019	1025	729
34	CM	2	m=1	5.0	0.0	3.80e-02	8.00e-03	8.00e-03	889	890	711	1062	70
									1074	1081	1296	1088	447
									1090	554	338	710	24
									1143	1348	1342	1040	1276
									1046	1052	1058	730	
35	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	15	13	748	33	1245
									912	910	908	1304	905
									928	1029	565	28	27
									26	1094	1097	1099	1101
			_						1103	1105	1107	16	
36	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	14	12	35	1250	941
									939	937	1305	934	1325
									630	30	29	22	1029
									928	905	1304	908	910
									912	1245	33		
37	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	11	781	10	9	795
									8	37	1255	972	970
									968	1302	965	1331	1140
									61	614	612	59	630
									1325	934	1305	937	939
									941	1250	35		
38	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	810	812	7	826	828
									6	39	1260	1005	1003
									1001	1303	998	1337	1144
									65	650	648	63	632
									1140	1331	965	1302	968
									970	972	1255	37	
39	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	5	852	854	4	862
									864	41	1265	1038	1036
									1034	1275	1031	1343	681
									686	684	67	668	666
									1144	1337	998	1303	1001
									1003	1005	1260	39	
40	CM	4	m=1	4.0	0.0	3.90e-02	1.55e-02	4.00e-02	879	881	3	1060	1059
									1063	1066	1295	1068	1070
									1072	31	701	699	681
									1343	1031	1275	1034	1036
									1038	1265	41		
41	CM	1	m=144	12.0	0.0	6.00e-03	8.00e-03	8.00e-03	1163	1164	1165	1166	1167
									79	1317	1318	1319	1320
									1321	1322	1323	77	134
									133	75	476	475	449
									83	84	451	538	81
42	PM		m=158	4.0	90.0				417	418	401	85	337
									427	430	433	436	439
43	PM		m=158	4.0	90.0				376	98	85	401	402
	_								403	404	405	406	
44	PM		m=158	4.0	90.0				549	83	84	545	507
	_								508	509	510	511	
45	PM		m=158	4.0	90.0				464	467	470	473	444
									449	83	549	486	448
									478				
46	PM		m=158	4.0	90.0				1059	1065	1076	1083	891
									1061	892	895	893	894
									1060				
47	PM		m=158	4.0	90.0				377	334	365	335	351
									354	357	360	97	98
									376				
48	PM		m=158	4.0	90.0				806	808	809	832	834
									825	824	822	831	830
49	PM		m=158	4.0	90.0				840	842	843	848	850
									847	846	844	857	856
50	PM		m=158	4.0	90.0				778	777	774	784	776
									790	779	783		
51	PM		m=158	4.0	90.0				786	789	788	797	799

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:

C51D_SR1A

Rev. Data

A Ottobre 2020

Pag. 38 di 109

											, ,	ag. 30 di 10	9
52	PM	m=158	4.0	90.0					794 15 736	792 764 734	1030 765 754	766 752	732 750
53	PM	m=158	4.0	90.0					13 14 738	741 735	743 773	745 771	733 769
54	PM	m=158	4.0	90.0					12 545 533	84 535	451 537	529 522	531 523
55	PM	m=158	4.0	90.0					58 332	341 374	345 371	331 69	364
Elem.	Stato Note	fist	f infi	Pos.	Momento			V N/M	x/d	Taglio		verif. V	B eff
1	ok Ls=10,m=1	-0.06	cm -0.07	137.4 280.0	daN cm 0.0 3.767e+04 5.519e+04 -2.788e+04 -6.928e+04	cm2 0.78 0.78 0.78 0.78 0.29	0.0 0.0 0.0 0.78 0.78	0.0 0.49 0.71 0.37 0.87	0.03 0.03 0.03 0.10 0.04	daN -803.29 -452.53 84.43 918.03 1151.87	0.0 0.0 0.0	0.17 0.39 0.07 0.80 0.25	cm 40.0 10.0 10.0 10.0 40.0
2	ok Ls=10,m=1	0.05	0.06	0.0 60.0 137.5	0.0 3.769e+04 5.523e+04 -1.304e+05	0.78 0.78 0.78 0.78	0.0 0.0 0.78 1.70	0.0 0.49 0.67 0.83	0.03 0.03 0.10 0.16	-803.61 -452.85 450.92 1284.19	0.0 0.0 0.0	0.17 0.39 0.39 0.87	40.0 10.0 10.0 10.0
3	ok Ls=10,m=1	-0.06	-0.07	320.0 0.0 60.0 137.4	-1.865e+05 0.0 3.767e+04 5.519e+04 -2.788e+04	0.39 0.78 0.78 0.78 0.78	1.96 0.0 0.0 0.0 0.0	0.97 0.0 0.49 0.71 0.37	0.07 0.03 0.03 0.03 0.10	1518.03 -803.29 -452.53 84.43 918.03	0.0 0.0 0.0 0.0	0.33 0.17 0.39 0.07 0.80	40.0 40.0 10.0 10.0 10.0
4	ok Ls=10,m=1	-0.02	-0.02	0.0 40.0 167.3	-6.928e+04 -6.928e+04 -3.069e+04 3.890e+04 -2.427e+04	0.29 0.28 0.78 0.78 0.78	0.78 0.78 0.78 0.0 0.78	0.87 0.87 0.41 0.50 0.32	0.04 0.04 0.10 0.03 0.10	1151.87 -1081.68 -847.84 111.89 785.48	0.0 0.0 0.0	0.25 0.23 0.73 0.10 0.68	40.0 40.0 10.0 10.0 10.0
5	ok Ls=10,m=1	-1.19	-0.97	0.0 40.0 332.9	-6.037e+04 -1.865e+05 -1.119e+05 1.555e+05 -1.608e+05	0.35 0.52 0.52 1.63 0.94	0.78 1.96 2.84 0.0 3.18	0.76 0.97 0.45 0.98 0.57	0.04 0.07 0.31 0.05 0.30	1019.32 -1981.62 -1747.78 225.28 1815.90	0.0 0.0 0.0	0.22 0.43 1.00 0.16 1.00	40.0 40.0 10.0 10.0 10.0
6	ok Ls=10,m=1	-0.02	-0.02	0.0 40.0 167.3 282.5	-2.381e+05 -6.928e+04 -3.069e+04 3.890e+04 -2.427e+04	0.52 0.28 0.78 0.78 0.78	2.53 0.78 0.78 0.0 0.78	0.98 0.87 0.41 0.50 0.32	0.09 0.04 0.10 0.03 0.10	2049.74 -1081.68 -847.84 111.89 785.48	0.0 0.0 0.0 0.0	0.44 0.23 0.73 0.10 0.68	40.0 40.0 10.0 10.0 10.0
7	ok Ls=10,m=1	-0.03	-0.03	0.0 40.0 159.7 282.5	-6.037e+04 -6.037e+04 -2.319e+04 4.288e+04 -2.561e+04	0.35 0.35 0.78 0.78 0.78	0.78 0.78 0.78 0.0 0.78	0.76 0.76 0.31 0.55 0.34	0.04 0.04 0.10 0.03 0.10	1019.32 -1046.47 -812.63 113.81 831.59	0.0 0.0 0.0 0.0	0.22 0.23 0.70 0.10 0.72	40.0 40.0 10.0 10.0
8	ok Ls=10,m=1	-0.03	-0.03	0.0 40.0 159.7 282.5	-6.355e+04 -6.037e+04 -2.319e+04 4.288e+04 -2.561e+04	0.35 0.35 0.78 0.78 0.78	0.78 0.78 0.78 0.0 0.78	0.80 0.76 0.31 0.55 0.34	0.04 0.04 0.10 0.03 0.10	1065.43 -1046.47 -812.63 113.81 831.59	0.0 0.0 0.0 0.0	0.23 0.23 0.70 0.10 0.72	40.0 40.0 10.0 10.0
9	ok Ls=10,m=1	-0.03	-0.03	0.0 40.0 161.8 282.5	-6.355e+04 -6.355e+04 -2.584e+04 4.189e+04 -2.511e+04	0.35 0.34 0.78 0.78 0.78	0.78 0.78 0.78 0.0 0.78	0.80 0.80 0.35 0.54 0.34	0.04 0.04 0.10 0.03 0.10	1065.43 -1059.58 -825.74 113.91 819.58	0.0 0.0 0.0 0.0	0.23 0.23 0.72 0.10 0.71	40.0 40.0 10.0 10.0
10	ok Ls=10,m=1	-0.64	-0.56	0.0 40.0 322.5 605.0	-6.257e+04 -2.381e+05 -1.608e+05 1.496e+05 -1.608e+05	0.34 0.52 0.52 1.57 0.52	0.78 2.53 3.19 0.0 3.19	0.78 0.98 0.59 0.98 0.59	0.04 0.09 0.36 0.05 0.36	1053.42 -2050.40 -1816.56 165.07 1816.56	0.0 0.0 0.0 0.0	0.23 0.44 1.00 0.12 1.00	40.0 40.0 10.0 10.0 10.0
11	ok Ls=10,m=1	-0.03	-0.03	0.0	-2.381e+05 -6.355e+04 -2.584e+04	0.52 0.34 0.78	2.53 0.78 0.78	0.98 0.80 0.35	0.09 0.04 0.10	2050.40 -1059.58 -825.74	0.0	0.44 0.23 0.72	40.0 40.0 10.0

40.0 -2.584e+04

161.8 4.189e+04

282.5 -2.511e+04

322.5 -6.257e+04

0.78

0.78

0.78

0.34

0.78

0.0

0.78

0.78

0.35

0.54

0.34

0.78

0.10

0.03

0.10

0.04

-825.74

113.91

819.58

1053.42

0.0

0.0

0.0

0.0

0.72

0.10

0.71

0.23

10.0

10.0

10.0

40.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:

C51D_SR1A

Rev. Data

A Ottobre 2020

Pag. 39 di 109

									•			
12	ok Ls=10,m=1	-0.03	-0.03	0.0 -6.257e+04	0.34	0.78	0.78	0.04	-1053.42	0.0	0.23	40.0
12	OK LS=10,111=1	-0.03	-0.03	40.0 -2.511e+04	0.34	0.78	0.78	0.04	-819.58	0.0	0.23	10.0
				160.7 4.189e+04	0.78	0.0	0.54	0.10	-113.91	0.0	0.71	10.0
				282.5 -2.584e+04	0.78	0.78	0.35	0.10	825.74	0.0	0.72	10.0
				322.5 -6.355e+04	0.34	0.78	0.80	0.04	1059.58	0.0	0.23	40.0
13	ok Ls=10,m=1	-0.03	-0.03	0.0 -6.257e+04	0.34	0.78	0.78	0.04	-1053.42	0.0	0.23	40.0
.0	OK 20-10,III-1	0.00	0.00	40.0 -2.511e+04	0.78	0.78	0.34	0.10	-819.58	0.0	0.71	10.0
				160.7 4.189e+04	0.78	0.0	0.54	0.03	-113.91	0.0	0.10	10.0
				282.5 -2.584e+04	0.78	0.78	0.35	0.10	825.74	0.0	0.72	10.0
				322.5 -6.355e+04	0.34	0.78	0.80	0.04	1059.58	0.0	0.23	40.0
14	ok Ls=10,m=1	-0.03	-0.03	0.0 -6.355e+04	0.35	0.78	0.80	0.04	-1065.43	0.0	0.23	40.0
	,			40.0 -2.561e+04	0.78	0.78	0.34	0.10	-831.59	0.0	0.72	10.0
				162.8 4.288e+04	0.78	0.0	0.55	0.03	-113.81	0.0	0.10	10.0
				282.5 -2.319e+04	0.78	0.78	0.31	0.10	812.63	0.0	0.70	10.0
				322.5 -6.037e+04	0.35	0.78	0.76	0.04	1046.47	0.0	0.23	40.0
15	ok Ls=10,m=1	-1.19	-0.97	0.0 -2.381e+05	0.52	2.53	0.98	0.09	-2049.74	0.0	0.44	40.0
				40.0 -1.608e+05	0.94	3.18	0.57	0.30	-1815.90	0.0	1.00	10.0
				312.1 1.555e+05	1.63	0.0	0.98	0.05	-225.28	0.0	0.16	10.0
				605.0 -1.119e+05	0.52	2.84	0.45	0.31	1747.78	0.0	1.00	10.0
				645.0 -1.865e+05	0.52	1.96	0.97	0.07	1981.62	0.0	0.43	40.0
16	ok Ls=10,m=1	-0.03	-0.03	0.0 -6.355e+04	0.35	0.78	0.80	0.04	-1065.43	0.0	0.23	40.0
				40.0 -2.561e+04	0.78	0.78	0.34	0.10	-831.59	0.0	0.72	10.0
				162.8 4.288e+04	0.78	0.0	0.55	0.03	-113.81	0.0	0.10	10.0
				282.5 -2.319e+04	0.78	0.78	0.31	0.10	812.63	0.0	0.70	10.0
				322.5 -6.037e+04	0.35	0.78	0.76	0.04	1046.47	0.0	0.23	40.0
17	ok Ls=10,m=1	-0.02	-0.02	0.0 -6.037e+04	0.35	0.78	0.76	0.04	-1019.32	0.0	0.22	40.0
				40.0 -2.427e+04	0.78	0.78	0.32	0.10	-785.48	0.0	0.68	10.0
				155.2 3.890e+04	0.78	0.0	0.50	0.03	-111.89	0.0	0.10	10.0
				282.5 -3.069e+04	0.78	0.78	0.41	0.10	847.84	0.0	0.73	10.0
40		0.00	0.00	322.5 -6.928e+04	0.28	0.78	0.87	0.04	1081.68	0.0	0.23	40.0
18	ok Ls=10,m=1	-0.02	-0.02	0.0 -6.037e+04	0.35	0.78	0.76	0.04	-1019.32	0.0	0.22	40.0
				40.0 -2.427e+04	0.78	0.78	0.32	0.10	-785.48	0.0	0.68	10.0
				155.2 3.890e+04	0.78	0.0	0.50	0.03	-111.89	0.0	0.10	10.0
				282.5 -3.069e+04	0.78	0.78	0.41	0.10	847.84	0.0	0.73	10.0
10	ok I a-10 m-1	0.06	0.07	322.5 -6.928e+04	0.28	0.78	0.87	0.04	1081.68	0.0	0.23	40.0
19	ok Ls=10,m=1	-0.06	-0.07	0.0 -6.928e+04	0.29	0.78	0.87	0.04	-1151.87	0.0	0.25	40.0
				40.0 -2.788e+04 182.6 5.519e+04	0.78 0.78	0.78 0.0	0.34 0.71	0.05 0.03	-918.03 -84.43	0.0 0.0	0.20 0.07	40.0 10.0
				260.0 3.767e+04	0.78	0.0	0.71	0.03	452.53	0.0	0.07	40.0
				320.0 3.7676+04	0.78	0.0	0.49	0.03	803.29	0.0	0.10	40.0
20	ok Ls=10,m=1	0.05	0.06	0.0 -1.865e+05	0.79	1.96	0.97	0.07	-1518.03	0.0	0.33	40.0
20	OK L3=10,111=1	0.00	0.00	40.0 -1.304e+05	0.78	1.70	0.83	0.16	-1284.19	0.0	0.87	10.0
				182.5 5.523e+04	0.78	0.78	0.67	0.10	-450.92	0.0	0.39	10.0
				260.0 3.769e+04	0.78	0.0	0.49	0.03	452.85	0.0	0.39	10.0
				320.0 0.0	0.78	0.0	0.0	0.03	803.61	0.0	0.17	40.0
21	ok Ls=10,m=1	-0.06	-0.07	0.0 -6.928e+04	0.29	0.78	0.87	0.04	-1151.87	0.0	0.25	40.0
	,			40.0 -2.788e+04	0.78	0.78	0.37	0.10	-918.03	0.0	0.80	10.0
				182.6 5.519e+04	0.78	0.0	0.71	0.03	-84.43	0.0	0.07	10.0
				260.0 3.767e+04	0.78	0.0	0.49	0.03	452.53	0.0	0.39	10.0
				320.0 0.0	0.78	0.0	0.0	0.03	803.29	0.0	0.17	40.0
29	ok Ls=11,m=1	-0.04	-0.05	0.0 0.0	0.88	0.0	0.0	0.03	-477.60	0.0	0.09	50.0
				12.5 5683.31	0.88	0.0	0.07	0.03	-431.73	0.0	0.36	11.0
				130.1 3.108e+04	0.88	0.0	0.41	0.03	50.80	0.0	0.04	11.0
				286.1 -2.809e+04	0.53	0.88	0.38	0.11	623.18	0.0	0.52	11.0
				293.6 -3.287e+04	0.24	0.88	0.42	0.03	650.70	0.0	0.12	50.0
30	ok Ls=11,m=1	0.01	0.02	0.0 -3.287e+04	0.17	0.88	0.42	0.03	-559.15	0.0	0.10	50.0
				7.5 -2.878e+04	0.17	0.88	0.39	0.12	-531.62	0.0	0.45	11.0
				142.7 1.287e+04	0.88	0.88	0.16	0.11	159.08	0.0	0.13	11.0
				276.0 -5.471e+04	0.17	0.88	0.75	0.12	648.02	0.0	0.54	11.0
٠.			0.10	283.5 -5.967e+04	0.17	0.88	0.77	0.03	675.55	0.0	0.13	50.0
31	ok Ls=11,m=1	-0.11	-0.13	0.0 -5.967e+04	0.26	0.88	0.76	0.03	-887.43	0.0	0.17	50.0
				7.5 -5.312e+04	0.26	0.88	0.72	0.12	-859.91	0.0	0.72	11.0
				237.5 5.006e+04	0.88	0.0	0.66	0.03	104.02	0.0	0.09	11.0
				480.9 -9.602e+04	0.26	1.22	0.96	0.15	997.26	0.0	0.75	11.0
32	ok Ls=11,m=1	0.46	-0.28	488.4 -1.036e+05	0.26	1.22 1.22	0.96 0.96	0.04	1024.78 -1108.70	0.0	0.19 0.21	50.0
32	UN L5=11,III=1	-0.46	-0.20	0.0 -1.036e+05	0.30	1.22		0.05		0.0		50.0
				7.5 -9.539e+04 292.2 6.999e+04	0.30 0.88	0.0	0.95 0.92	0.15 0.03	-1081.18 60.73	0.0 0.0	0.81 0.05	11.0 11.0
				585.4 -1.151e+05	0.88	1.46	0.92	0.03	1136.70	0.0	0.05	11.0
				592.9 -1.237e+05	0.30	1.46	0.96	0.17	1164.23	0.0	0.80	50.0
33	ok Ls=11,m=1	-0.69	-0.60	0.0 -1.237e+05	0.30	1.46	0.96	0.05	-1174.87	0.0	0.22	50.0
55	OK ES-11,111-1	0.00	5.00	0.0 1.20/6T00	0.00	1.70	0.50	0.00	1117.01	0.0	J.22	50.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Pag. 40 di 109

				75	-1.150e+05	0.30	1.46	0.97	0.17	-1147.34	0.0	0.81	11.0
					7.398e+04	0.30	0.0	0.97	0.17	-68.95	0.0	0.06	11.0
					-8.504e+04	0.30	1.10	0.94	0.14	1071.50	0.0	0.83	11.0
					-9.318e+04	0.30	1.10	0.96	0.04	1099.02	0.0	0.21	50.0
34	ok Ls=11,m=1	0.02	0.03		-9.318e+04	0.22	1.10	0.96	0.04	-878.40	0.0	0.16	50.0
				7.5	-8.670e+04	0.22	1.10	0.96	0.14	-850.87	0.0	0.66	11.0
					2.549e+04	0.88	0.0	0.33	0.03	-136.54	0.0	0.11	11.0
				307.5	5120.03	0.88	0.0	0.07	0.03	386.66	0.0	0.32	11.0
35	ok Ls=10,m=1	0.05	-0.06	320.0 0.0	0.0 0.0	0.88 0.78	0.0	0.0 0.0	0.03 0.03	432.54 -720.95	0.0	0.08 0.16	50.0 40.0
35	OK LS=10,III=1	-0.05	-0.06		3.361e+04	0.78	0.0	0.43	0.03	-720.95 -399.47	0.0	0.16	10.0
					4.850e+04	0.78	0.0	0.43	0.03	115.69	0.0	0.33	10.0
					-1.880e+04	0.78	0.78	0.25	0.10	753.51	0.0	0.65	10.0
					-5.322e+04	0.38	0.78	0.66	0.04	967.83	0.0	0.21	40.0
36	ok Ls=10,m=1	0.01	0.02		-5.322e+04	0.27	0.78	0.67	0.04	-910.05	0.0	0.20	40.0
					-2.111e+04	0.78	0.78	0.28	0.10	-695.73	0.0	0.60	10.0
					3.003e+04	0.78	0.78	0.36	0.10	362.27	0.0	0.31	10.0
					-5.896e+04	0.78	0.83	0.75	0.10	837.12	0.0	0.72	10.0
37	ok Ls=10,m=1	0.21	-0.16		-9.674e+04	0.42 0.39	1.00	0.95 0.95	0.05 0.05	1051.44	0.0	0.23 0.30	40.0
31	OK LS=10,111=1	-0.21	-0.16		-9.674e+04 -4.634e+04	0.39	1.00 0.88	0.95	0.03	-1367.01 -1152.69	0.0	0.30	40.0 10.0
					8.276e+04	0.75	0.0	0.99	0.10	236.88	0.0	0.20	10.0
					-1.018e+05	0.41	1.40	0.78	0.15	1308.45	0.0	0.95	10.0
					-1.584e+05	0.39	1.66	0.97	0.07	1522.77	0.0	0.33	40.0
38	ok Ls=10,m=1	-0.62	-0.54		-1.584e+05	0.44	1.66	0.97	0.07	-1666.81	0.0	0.36	40.0
					-9.604e+04	0.44	1.63	0.64	0.17	-1452.49	0.0	1.00	10.0
					1.143e+05	1.18	0.0	0.98	0.04	138.29	0.0	0.11	10.0
					-1.207e+05	0.44	1.85	0.71	0.19	1516.43	0.0	1.00	10.0
39	ok Ls=10,m=1	-0.83	-0.72		-1.856e+05 -1.856e+05	0.44 0.44	1.95 1.95	0.97 0.97	0.07 0.07	1730.75 -1735.37	0.0	0.37 0.38	40.0 40.0
33	OK L3=10,111=1	-0.03	-0.72		-1.205e+05	0.44	1.87	0.70	0.07	-1521.05	0.0	1.00	10.0
					1.175e+05	1.22	0.0	0.98	0.04	-157.02	0.0	0.12	10.0
					-8.132e+04	0.44	1.58	0.56	0.17	1438.79	0.0	1.00	10.0
				596.7	-1.432e+05	0.44	1.50	0.96	0.06	1653.11	0.0	0.36	40.0
40	ok Ls=10,m=1	0.02	0.03		-1.432e+05	0.33	1.50	0.97	0.06	-1304.66	0.0	0.28	40.0
				40.0	-9.526e+04	0.78	1.27	0.80	0.13	-1090.34	0.0	0.82	10.0
					4.849e+04	0.78	0.69	0.59	0.05	-310.92	0.0	0.27	10.0
				260.0	3.361e+04	0.78	0.0	0.43	0.03	399.35	0.0	0.35	10.0
Elem.		f ist	f infi	260.0	3.361e+04 0.0 Momento	0.78	0.0	0.43	0.03	399.35 720.83 Taglio	0.0	0.35	10.0
Elem.				260.0	3.361e+04 0.0 Momento -2.381e+05	0.78 0.78 Af inf. A	0.0 0.0 f. sup	0.43 0.0 V N/M	0.03 0.03 x/d	399.35 720.83 Taglio -2050.40	0.0 0.0 Af V	0.35 0.16 verif. V	10.0
Elem.		f ist 0.05	f infi 0.06	260.0	3.361e+04 0.0 Momento	0.78 0.78	0.0	0.43 0.0	0.03 0.03	399.35 720.83 Taglio	0.0	0.35 0.16	10.0
Elem.				260.0	3.361e+04 0.0 Momento -2.381e+05	0.78 0.78 Af inf. A	0.0 0.0 f. sup	0.43 0.0 V N/M	0.03 0.03 x/d	399.35 720.83 Taglio -2050.40	0.0 0.0 Af V	0.35 0.16 verif. V	10.0
Elem. Elem.	Pos.		0.06	260.0	3.361e+04 0.0 Momento -2.381e+05	0.78 0.78 Af inf. A	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M	0.03 0.03 x/d	399.35 720.83 Taglio -2050.40	0.0 0.0 Af V	0.35 0.16 verif. V	10.0
Elem.	cm	0.05	0.06	260.0 320.0	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck	0.78 0.78 Af inf. A 1.63	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99	0.03 0.03 x/d 0.36 rPfyk	399.35 720.83 Taglio -2050.40 2050.40 wR	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF	10.0 40.0 wP mm
	cm 0.0	0.05 rRfck 0.0	0.06	260.0 320.0 rFfck 0.0	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0	0.78 0.78 Af inf. A 1.63 rRfyk	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0	0.03 0.03 x/d 0.36 rPfyk	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0	10.0 40.0 wP mm 0.0
Elem.	cm 0.0 60.0	0.05 rRfck 0.0 0.12	0.06	260.0 320.0 rFfck 0.0 0.10	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0	10.0 40.0 wP mm 0.0 0.0
Elem.	cm 0.0 60.0 137.4	0.05 rRfck 0.0 0.12 0.18	0.06	260.0 320.0 rFfck 0.0 0.10 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47 0.67	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0	WP mm 0.0 0.0 0.0
Elem.	cm 0.0 60.0 137.4 280.0	0.05 rRfck 0.0 0.12 0.18 0.18	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47 0.67 0.35	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18 0.24	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0
Elem.	cm 0.0 60.0 137.4 280.0 320.0	0.05 rRfck 0.0 0.12 0.18 0.18	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47 0.67 0.35	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18 0.24 0.0 0.10 0.12	0.78 0.78 Af inf. A 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18 0.24 0.0 0.10 0.12 0.65	0.78 0.78 1.63 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.12
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52 0.33	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42	0.78 0.78 1.63 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.00	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52 0.33 0.0	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18 0.24 0.0 0.10 0.10 0.12 0.65 0.42 0.0	0.78 0.78 1.63 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78 0.93	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.00 0.12	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52 0.33 0.0 0.10	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13	0.78 0.78 1.63 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78 0.93 0.0	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.00 0.12 0.18	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52 0.33 0.0 0.10 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18	0.78 0.78 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78 0.93 0.0 0.47	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0 0.37 0.52	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	WP mm 0.0 0.0 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.00 0.12	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.08 0.10 0.52 0.33 0.0 0.10	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18	0.78 0.78 1.63 1.63 rRfyk 0.0 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78 0.93 0.0	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.12 0.18 0.18 0.23 0.23	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.10 0.15 0.15 0.19	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.18 0.24	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.00 0.41 0.54 0.78 0.93 0.00 0.47 0.67 0.67 0.93	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.69	399.35 720.83 Taglio -2050.40 2050.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.0 40.0 40.0 wP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0 0.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.23 0.23 0.23	0.06	260.0 320.0 7Ffck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.10 0.15 0.15 0.19	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.18 0.24 0.0	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.93 0.0 0.47 0.67 0.35 0.93	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.78	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.32	399.35 720.83 Taglio -2050.40 2050.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.0 40.0 40.0 wP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0 0.0 40.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.20 0.20 0.11	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.10 0.15 0.15 0.17 0.19	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.18 0.24 0.0	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.0 0.41 0.54 0.78 0.93 0.0 0.47 0.67 0.35 0.87 0.04 0.47	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.29 0.73 0.0	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.32	399.35 720.83 Taglio -2050.40 2050.40	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.0 40.0 40.0 wP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0 0.0 40.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.20 0.21 0.11 0.15	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.10 0.15 0.15 0.17 0.19 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.18 0.24 0.0 1.10 0.12 0.65 0.42 0.0 0.13 0.11 0.15	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.00 0.41 0.67 0.35 0.87 0.87 0.87 0.87	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.29 0.73 0.0	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.0	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10.0 40.0 WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2 3 4	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0 0.0 40.0 167.3 282.5	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.23 0.20 0.11 0.15 0.19	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.15 0.15 0.17 0.15 0.15 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.24 0.0 0.11 0.15 0.42 0.0 0.11 0.15 0.18	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.00 0.47 0.67 0.35 0.87 0.87 0.40 0.44	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.78 0.0 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.74 0.75 0.7	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.69 0.32 0.32 0.32 0.22 0.56	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10.0 40.0 WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 60.0 137.4 280.0 320.0 0.0 40.0 167.3 282.5 322.5 0.0	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.00 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.20 0.11 0.15 0.19 0.40	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.10 0.15 0.15 0.17 0.09 0.12 0.16 0.33	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.24 0.0 1.13 0.14 0.01 0.15 0.01 0.15 0.15 0.10 0.11 0.11 0.15 0.15 0.10 0.11 0.11 0.12 0.05 0.01 0.13 0.14 0.01 0.15 0.01 0.10 0.11 0.11 0.12 0.05 0.01 0.13 0.14 0.01 0.15 0.01 0.15 0.01 0.01 0.11 0.01	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.0 0.47 0.67 0.35 0.87 0.40 0.44 0.44 0.29 0.73 0.93	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.29 0.73 0.0	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.52 0.27 0.69 0.32 0.32 0.32 0.32 0.22 0.56 0.73	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 wF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10.0 40.0 40.0 WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elem. 1 2 3 4	cm 0.0 60.0 137.4 280.0 320.0 0.0 60.0 137.5 280.0 320.0 0.0 60.0 137.4 280.0 320.0 0.0 40.0 167.3 282.5	0.05 rRfck 0.0 0.12 0.18 0.18 0.23 0.0 0.11 0.14 0.63 0.40 0.02 0.18 0.18 0.23 0.23 0.20 0.11 0.15 0.19	0.06	260.0 320.0 rFfck 0.0 0.10 0.15 0.15 0.19 0.0 0.52 0.33 0.0 0.15 0.15 0.17 0.15 0.15 0.15	3.361e+04 0.0 Momento -2.381e+05 1.555e+05 rPfck 0.0 0.13 0.18 0.24 0.0 0.10 0.12 0.65 0.42 0.0 0.13 0.18 0.24 0.0 0.11 0.15 0.42 0.0 0.11 0.15 0.18	0.78 0.78 1.63 1.63 1.63 1.63 1.63 1.63 1.63 0.47 0.67 0.35 0.87 0.00 0.47 0.67 0.35 0.87 0.87 0.40 0.44	0.0 0.0 f. sup 3.19	0.43 0.0 V N/M 0.99 rFfyk 0.0 0.39 0.56 0.29 0.73 0.0 0.32 0.39 0.65 0.78 0.0 0.39 0.56 0.78 0.0 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.32 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.00 0.39 0.56 0.29 0.73 0.74 0.75 0.7	0.03 0.03 x/d 0.36 rPfyk 0.0 0.37 0.52 0.27 0.69 0.0 0.29 0.34 0.60 0.73 0.0 0.37 0.52 0.27 0.69 0.69 0.32 0.32 0.32 0.22 0.56	399.35 720.83 Taglio -2050.40 2050.40 wR mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 Af V	0.35 0.16 verif. V 1.00 WF mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10.0 40.0 WP mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

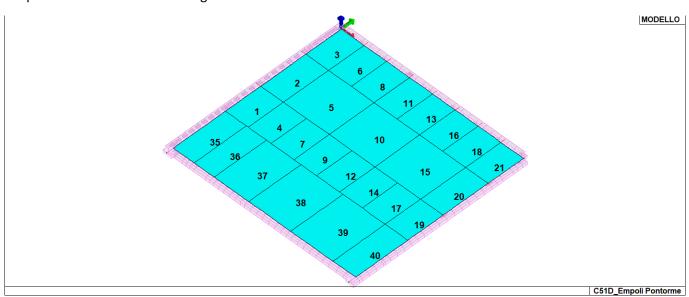
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

										•
	605.0	0.63	0.53	0.66	0.53	0.45	0.42	0.07	0.06	0.05
	645.0	0.46	0.39	0.49	0.95	0.80	0.75	0.18	0.15	0.14
6	0.0	0.23	0.19	0.24	0.87	0.73	0.69	0.0	0.0	0.0
Ü	40.0	0.20	0.17	0.21	0.40	0.34	0.32	0.0	0.0	0.0
			0.17		0.40		0.32			
	167.3	0.11	0.09	0.11	0.44	0.35	0.32	0.0	0.0	0.0
	282.5	0.15	0.12	0.15	0.29	0.24	0.22	0.0	0.0	0.0
	322.5	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
7	0.0	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
•	40.0	0.14	0.11	0.14	0.28	0.22	0.21	0.0	0.0	0.0
	40.0		0.11		0.20		0.21			
	159.7	0.13	0.10	0.13	0.49	0.40	0.37	0.0	0.0	0.0
	282.5	0.16	0.13	0.16	0.31	0.26	0.24	0.0	0.0	0.0
	322.5	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
8	0.0	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
-	40.0	0.14	0.11	0.14	0.28	0.22	0.21	0.0	0.0	0.0
	159.7		0.10		0.49		0.37			
	109.7	0.13	0.10	0.13		0.40	0.37	0.0	0.0	0.0
	282.5	0.16	0.13	0.16	0.31	0.26	0.24	0.0	0.0	0.0
	322.5	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
9	0.0	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
	40.0	0.16	0.13	0.16	0.32	0.26	0.24	0.0	0.0	0.0
	161.8	0.13	0.10	0.12	0.48	0.38	0.35	0.0	0.0	0.0
	101.0		0.10			0.30	0.33			
	282.5	0.15	0.13	0.15	0.31	0.25	0.23	0.0	0.0	0.0
	322.5	0.20	0.16	0.20	0.76	0.63	0.59	0.0	0.0	0.0
10	0.0	0.46	0.39	0.49	0.95	0.80	0.75	0.18	0.15	0.14
	40.0	0.67	0.56	0.70	0.54	0.45	0.43	0.07	0.06	0.05
	322.5	0.34	0.27	0.34	0.87	0.70	0.65	0.12	0.10	0.09
	605.0	0.67	0.56	0.70	0.54	0.45	0.43	0.07	0.06	0.05
			0.30		0.54	0.43	0.43		0.06	
	645.0	0.46	0.39	0.49	0.95	0.80	0.75	0.18	0.15	0.14
11	0.0	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
	40.0	0.16	0.13	0.16	0.32	0.26	0.24	0.0	0.0	0.0
	161.8	0.13	0.10	0.12	0.48	0.38	0.35	0.0	0.0	0.0
	282.5	0.15	0.13	0.15	0.31	0.25	0.23	0.0	0.0	0.0
	202.5		0.10		0.51		0.20			
	322.5	0.20	0.16	0.20	0.76	0.63	0.59	0.0	0.0	0.0
12	0.0	0.20	0.16	0.20	0.76	0.63	0.59	0.0	0.0	0.0
	40.0	0.15	0.13	0.15	0.31	0.25	0.23	0.0	0.0	0.0
	160.7	0.13	0.10	0.12	0.48	0.38	0.35	0.0	0.0	0.0
	282.5	0.16	0.13	0.16	0.32	0.26	0.24	0.0	0.0	0.0
	322.5	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
40			0.17		0.77		0.00			
13	0.0	0.20	0.16	0.20	0.76	0.63	0.59	0.0	0.0	0.0
	40.0	0.15	0.13	0.15	0.31	0.25	0.23	0.0	0.0	0.0
	160.7	0.13	0.10	0.12	0.48	0.38	0.35	0.0	0.0	0.0
	282.5	0.16	0.13	0.16	0.32	0.26	0.24	0.0	0.0	0.0
	322.5	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
14	0.0	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
14	40.0						0.00			
	40.0	0.16	0.13	0.16	0.31	0.26	0.24	0.0	0.0	0.0
	162.8	0.13	0.10	0.13	0.49	0.40	0.37	0.0	0.0	0.0
	282.5	0.14	0.11	0.14	0.28	0.22	0.21	0.0	0.0	0.0
	322.5	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
15	0.0	0.46	0.39	0.49	0.95	0.80	0.75	0.18	0.15	0.14
	40.0	0.63	0.53	0.66	0.53	0.45	0.42	0.07	0.06	0.05
	312.1	0.36	0.30	0.37	0.91	0.75	0.70	0.12	0.11	0.10
	605.0	0.47	0.39	0.49	0.41	0.34	0.32	0.06	0.0	0.0
	645.0	0.40	0.33	0.41	0.93	0.78	0.73	0.20	0.0	0.0
16	0.0	0.20	0.17	0.21	0.77	0.64	0.60	0.0	0.0	0.0
	40.0	0.16	0.13	0.16	0.31	0.26	0.24	0.0	0.0	0.0
	162.8	0.13	0.10	0.13	0.49	0.40	0.37	0.0	0.0	0.0
	282.5	0.13	0.10	0.13	0.49	0.40			0.0	
							0.21	0.0		0.0
	322.5	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
17	0.0	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
	40.0	0.15	0.12	0.15	0.29	0.24	0.22	0.0	0.0	0.0
	155.2	0.11	0.09	0.11	0.44	0.35	0.32	0.0	0.0	0.0
	282.5	0.20	0.17	0.21	0.40	0.34	0.32	0.0	0.0	0.0
4.5	322.5	0.23	0.19	0.24	0.87	0.73	0.69	0.0	0.0	0.0
18	0.0	0.19	0.16	0.19	0.73	0.60	0.56	0.0	0.0	0.0
	40.0	0.15	0.12	0.15	0.29	0.24	0.22	0.0	0.0	0.0
	155.2	0.11	0.09	0.11	0.44	0.35	0.32	0.0	0.0	0.0
	282.5	0.20	0.17	0.21	0.40	0.34	0.32	0.0	0.0	0.0
	322.5	0.23	0.19	0.24	0.47	0.73	0.69	0.0	0.0	0.0
10										
19	0.0	0.23	0.19	0.24	0.87	0.73	0.69	0.0	0.0	0.0
	40.0	0.09	0.07	0.09	0.34	0.28	0.26	0.0	0.0	0.0
	182.6	0.18	0.15	0.18	0.67	0.56	0.52	0.0	0.0	0.0
	260.0	0.12	0.10	0.13	0.47	0.39	0.37	0.0	0.0	0.0
			-	-			-	-	-	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

	320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.40	0.33	0.42	0.93	0.78	0.73	0.20	0.0	0.0
	40.0	0.63	0.52	0.65	0.78	0.65	0.60	0.15	0.13	0.12
	182.5	0.14	0.10	0.12	0.54	0.39	0.34	0.0	0.0	0.0
	260.0	0.11	0.08	0.10	0.41	0.32	0.29	0.0	0.0	0.0
	320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	0.0	0.23	0.19	0.24	0.87	0.73	0.69	0.0	0.0	0.0
	40.0	0.18	0.15	0.18	0.35	0.29	0.27	0.0	0.0	0.0
	182.6	0.18	0.15	0.18	0.67	0.56	0.52	0.0	0.0	0.0
	260.0	0.12	0.10	0.13	0.47	0.39	0.37	0.0	0.0	0.0
	320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	12.5	0.02	0.01	0.02	0.06	0.05	0.05	0.0	0.0	0.0
	130.1	0.08	0.07	0.09	0.31	0.26	0.25	0.0	0.0	0.0
	286.1	0.16	0.13	0.16	0.28	0.22	0.21	0.0	0.0	0.0
00	293.6	0.08	0.07	0.09	0.31	0.26	0.25	0.0	0.0	0.0
30	0.0 7.5	0.08	0.07	0.09	0.31 0.29	0.26	0.25 0.23	0.0	0.0	0.0
	7.5 142.7	0.17 0.01	0.14 3.97e-03	0.18 2.82e-03	0.29	0.24 7.31e-03	3.89e-03	0.0 0.0	0.0 0.0	0.0 0.0
	276.0	0.01	0.27	0.34	0.03	0.45	0.42	0.0	0.0	0.0
	283.5	0.33 0.15	0.27	0.34	0.54	0.43	0.42	0.0	0.0	0.0
31	0.0	0.15	0.12	0.16	0.57	0.47	0.44	0.0	0.0	0.0
31	7.5	0.13	0.12	0.32	0.53	0.47	0.41	0.0	0.0	0.0
	237.5	0.12	0.10	0.13	0.47	0.38	0.36	0.0	0.0	0.0
	480.9	0.54	0.46	0.59	0.75	0.64	0.62	0.0	0.0	0.0
	488.4	0.24	0.21	0.27	0.77	0.66	0.63	0.0	0.0	0.0
32	0.0	0.24	0.21	0.27	0.77	0.66	0.63	0.0	0.0	0.0
0_	7.5	0.53	0.46	0.59	0.75	0.64	0.61	0.0	0.0	0.0
	292.2	0.17	0.14	0.18	0.66	0.54	0.51	0.12	0.10	0.0
	585.4	0.62	0.54	0.69	0.78	0.67	0.65	0.26	0.23	0.0
	592.9	0.27	0.24	0.30	0.79	0.69	0.66	0.0	0.0	0.0
33	0.0	0.27	0.24	0.30	0.79	0.69	0.66	0.0	0.0	0.0
	7.5	0.62	0.54	0.69	0.78	0.67	0.65	0.26	0.23	0.0
	301.3	0.19	0.16	0.20	0.73	0.61	0.58	0.14	0.12	0.11
	589.2	0.49	0.42	0.54	0.73	0.63	0.60	0.0	0.0	0.0
	596.7	0.23	0.19	0.25	0.77	0.66	0.63	0.0	0.0	0.0
34	0.0	0.23	0.19	0.25	0.77	0.66	0.63	0.0	0.0	0.0
	7.5	0.51	0.43	0.55	0.75	0.64	0.61	0.0	0.0	0.0
	202.1	0.05	0.03	0.04	0.19	0.13	0.12	0.0	0.0	0.0
	307.5	0.01	9.81e-03	0.01	0.05	0.04	0.03	0.0	0.0	0.0
0.5	320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0 0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	60.0 134.6	0.11 0.15	0.09	0.12 0.16	0.42 0.59	0.36 0.50	0.34 0.47	0.0 0.0	0.0 0.0	0.0 0.0
	253.6	0.13	0.13	0.10	0.39	0.30	0.14	0.0	0.0	0.0
	293.6	0.16	0.14	0.17	0.62	0.52	0.49	0.0	0.0	0.0
36	0.0	0.16	0.14	0.17	0.62	0.52	0.49	0.0	0.0	0.0
00	40.0	0.13	0.11	0.14	0.26	0.22	0.21	0.0	0.0	0.0
	154.8	0.07	0.05	0.05	0.26	0.17	0.15	0.0	0.0	0.0
	243.5	0.35	0.29	0.36	0.67	0.56	0.52	0.0	0.0	0.0
	283.5	0.26	0.22	0.27	0.89	0.75	0.70	0.0	0.0	0.0
37	0.0	0.26	0.22	0.28	0.89	0.75	0.70	0.0	0.0	0.0
	40.0	0.26	0.21	0.26	0.48	0.39	0.36	0.0	0.0	0.0
	248.4	0.24	0.20	0.25	0.88	0.73	0.68	0.13	0.11	0.10
	448.4	0.55	0.47	0.59	0.74	0.63	0.59	0.16	0.0	0.0
	488.4	0.37	0.31	0.40	0.94	0.81	0.76	0.0	0.0	0.0
38	0.0	0.37	0.31	0.39	0.94	0.81	0.76	0.0	0.0	0.0
	40.0	0.50	0.42	0.53	0.61	0.52	0.49	0.0	0.0	0.0
	295.7	0.29	0.24	0.30	0.89	0.74	0.69	0.12	0.11	0.10
	552.9	0.61	0.53	0.66	0.69	0.59	0.56	0.13	0.11	0.10
	592.9	0.41	0.35	0.44	0.96	0.83	0.78	0.21	0.0	0.0
39	0.0	0.41	0.35	0.44	0.96	0.83	0.78	0.21	0.0	0.0
	40.0	0.60	0.52	0.66	0.68	0.58	0.55	0.12	0.11	0.10
	294.6 556.7	0.30	0.26	0.32	0.91	0.77	0.72 0.42	0.12	0.11	0.10
	556.7 596.7	0.42 0.34	0.36 0.29	0.45 0.37	0.52 0.94	0.44 0.80	0.42	0.0 0.0	0.0 0.0	0.0 0.0
40	0.0	0.34	0.29	0.37	0.94	0.80	0.76	0.0	0.0	0.0
70	40.0	0.50	0.30	0.54	0.75	0.64	0.70	0.0	0.0	0.0
	185.5	0.30	0.43	0.12	0.73	0.38	0.34	0.0	0.0	0.0
	260.0	0.10	0.08	0.10	0.37	0.30	0.28	0.0	0.0	0.0
	320.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

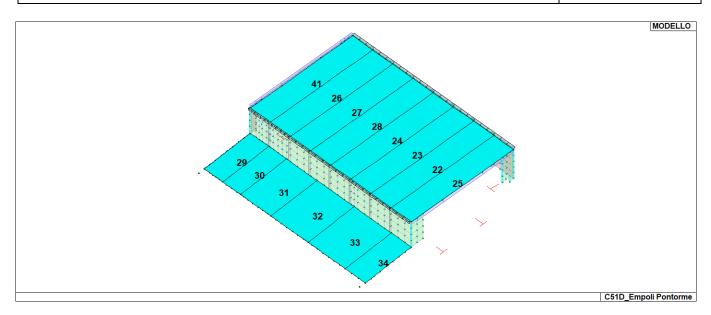

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Docume	nto:					
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pa	ag. 43 di 109					

Elem.		rRfck 0.67		fck .56	rPfck 0.70	rRfyk 0.96	rFfyk 0.83		Pfyk 0.78	wR 0.26	(wF).23	wP 0.14
Elem.	Stato Note	f ist	f infi	Fac. B-A	Pos.	Momento	Taglio	V. 127	V. 128	V. 545	V. 129	V. 130	V. 131
		cm	cm		cm	daN	daN/cm						
22	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0		'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0		'.51e-04	0.14	0.14
23	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0		'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0		'.51e-04	0.14	0.14
24	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0		'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0		'.51e-04	0.14	0.14
25	ok Lm=144,p=1	-0.22	-0.25	0.88	0.0	0.0	-5.09	0.0	0.0		'.40e-04	0.14	0.14
					160.0	407.04	0.0	0.21	0.16	0.0	0.0	0.10	0.02
					320.0	0.0	5.09	0.0	0.0		'.40e-04	0.14	0.14
26	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0		'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0	0.07	'.51e-04	0.14	0.14
27	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0	0.07	'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0	0.07	'.51e-04	0.14	0.14
28	ok Lm=144,p=1	-0.23	-0.26	0.88	0.0	0.0	-5.13	0.0	0.0		'.51e-04	0.14	0.14
					161.3	413.42	0.0	0.21	0.16	0.0	0.0	0.11	0.02
					322.5	0.0	5.13	0.0	0.0	0.07	'.51e-04	0.14	0.14
41	ok Lm=144,p=1	-0.22	-0.25	0.88	0.0	0.0	-5.09	0.0	0.0	0.07	'.40e-04	0.14	0.14
					160.0	407.04	0.0	0.21	0.16	0.0	0.0	0.10	0.02
					320.0	0.0	5.09	0.0	0.0	0.07	'.40e-04	0.14	0.14
Elem.		f ist	f infi		I	Momento 0.0	Taglio -5.13	V. 127	V. 128	V. 545	V. 129	V. 130	V. 131
		-0.22	-0.25			413.42	5.13	0.21	0.16	0.07	'.51e-04	0.14	0.14

Si riportano le verifiche in forma grafica dei solai. Il celeste indica che il solaio è verificato.



(Solaio del piano terra)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pa	ag. 44 di 109					

(Solai di copertura)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 45 di 109					

SCHEMATIZZAZIONE DEI CASI DI CARICO

Viene di seguito riportata l'analisi dei carichi utilizzata nella progettazione, evidenziando i carichi permanenti strutturali (G1, con coefficiente di sicurezza 1.3), carichi permanenti non strutturali (G2, con coefficiente di sicurezza 1.5) e carichi accidentali (Q, con coefficiente di sicurezza 1.5).

In particolare si distinguono:

- Solaio piano terra: solaio in latero cemento tipo bisap o equivalente
- Solaio di copertura: x-lam spessore 12 cm
- Azioni di neve e vento

		Solaio p	oiano terra S0a					
Carichi permanenti Strutturali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio bisap in laterocemento 24+4						0,28		295,00
				Totale				295,00
Carichi permanenti non strutturali ma compiutamente definiti				L	b	h	P.U.	Peso
Pannello isolante xps			valore medio			0,04	65	2,6
Massetto alleggerito			valore medio			0,10	800	80
Arrotondamento								2,4
				Totale				85,00
Carichi permanenti non strutturali			riferimento	L	b	h	P.U.	Peso
					[m]	[m]	[kg/m3]	[daN/m2]
Pannello termoacustico Isolkenaf			scheda tecnica	ı		0,01	100,00	1,00
Massetto alleggerito			valore medio			0,06	800,00	48,00
Massetto autolivellante (Fassa SA 500)			scheda tecnica	ı		0,04	2100,00	84,00
Pavimentazione sportiva			valore medio			0,01		10,00
Arrotondamento								2,00
				Totale				145,00
Out 11 Act box 1								
Carichi Accidentali				[m]	b	h	P.U.	Peso [daN/m2]
Categoria C4 aree con possibile svolgimento di attività fisica				[m]	[m]	[m]	[kg/m3]	500,00
outegoila 64 aree con possibile svoigimente di attività listea								300,00
Carichi permanenti Strutturali e perm. compiutamente definiti G'				380,00	[daN/m2]		γG1 =	1,3
Carichi permanenti non strutturali G2				145,00	[daN/m2]		γG2 =	1,5
Totale Carichi Permanenti G1 + G2				525,00	[daN/m2]			
Carichi Accidentali Qk				500,00	[daN/m2]		γQ=	1,5
G1 =	380	[daN/m2]						
G2 =	145	[daN/m2]	Cate	goria azione variabil	е	Ψ0	Ψ1	Ψ2
Qk =	500	[daN/m2]		C4		0,7	0,7	0,6

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51L	C51D_SR1A				
Re	V.	Data			
Α		Ottobre 2020			
Pag. 46 di 109					

		Solaio pi	ano terra S0b					
Carichi permanenti Strutturali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio bisap in laterocemento 24+4						0,28		295,00
				Totale				295,00
Carichi permanenti non strutturali ma compiutamente definiti				L	b	h	P.U.	Peso
Pannello isolante xps			valore medic)		0,04	65,00	2,60
Massetto alleggerito			valore medic	·		0,11	800,00	88,00
Arrotondamento								4,40
	Ţ			Totale				95,00
Carichi permanenti non strutturali			riferimento	L	b	h	P.U.	Peso
					[m]	[m]	[kg/m3]	[daN/m2]
Pannello termoacustico isolkenaf			scheda tecni	ca		0,010	100	1,00
Pavimentazione radiante in EPS			valore medio		0,050	25	1,25	
Impianto pavimento radiante: strato 50%bugne+tubi+ 50%percentuale autilivellant	te		valore medic	·		0,010	2100	21,00
Massetto autolivellante (Fassa SA 500)			scheda tecni	ca		0,050	2100,00	105,00
Pavimentazione in gress porcellanato			valore medic			0,01	2300,00	23,00
Arrotondamento								3,75
				Totale				155,00
Carichi Accidentali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Categoria C2 aree con posti a sedere fissi								400,00
Carichi permanenti Strutturali e perm. Compiutamente definiti G1				390,00	[daN/m2]		γG1 =	1,3
Carichi permanenti non strutturali G2				155,00	[daN/m2]		γG2 =	1,5
Totale Carichi Permanenti G1 + G2				545,00	[daN/m2]			
Carichi Accidentali Qk				400,00	[daN/m2]		γQ =	1,5
G1 =	390	[daN/m2]						
G2 =	155	[daN/m2]	Categ	goria azione variabil	е	Ψ0	Ψ1	Ψ2
Qneve =	400	[daN/m2]		C2		0,7	0,7	0,6

		Solaid	Copertura spog	liatoi S1				
Carichi permanenti Strutturali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio isotex S25 5+20+5 (strutturali 20+5)						0,25		376,00
Arrontodamento								4,00
				Totale				380,00
Carichi permanenti non strutturali				L	b	h	P.U.	Peso
					[m]	[m]	[kg/m3]	[daN/m2]
Barriera vapore				1	1	0,01	200	2
Lana di roccia Rockwool front roch energy sp. 16 cm				1	1	0,16	150	24
Manto di copertura in Riverclack								6
Pannelli fotovoltaici (Sunpower x22-360)								12
Sistema ancoraggio per pannelli fotocoltaici								23
Impiantistica interna								10
Arrotondamento								3,00
				Totale				80,00
Carichi Accidentali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Carico Neve								80,00
Carichi permanenti Strutturali G	1			380,00	[daN/m2]		γG1 =	1,3
Carichi permanenti non strutturali	62			80,00	[daN/m2]		γG2 =	1,5
Totale Carichi Permanenti G1 + G	2			460,00	[daN/m2]			
Carichi Accidentali Qneve				80,00	[daN/m2]		γQ =	1,5
G1 =	380	[daN/m2]						
G2 =	80	[daN/m2]	C	ategoria azione var	iabile	Ψ0	Ψ1	Ψ2
Qneve =	80	[daN/m2]		Neve		0,5	0,2	0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev. Data				
A Ottobre 2020				
Pag. 47 di 109				

		Solaio Copertu	ura della palestra S2					
Carichi permanenti Strutturali			L		b	h	P.U.	Peso
			[m]		[m]	[m]	[kg/m3]	[daN/m2]
Legno pannelli XLAM			1		1	0,12	500	60,00
			Total	e				60,00
Carichi permanenti non strutturali			L		b	h	P.U.	Peso
Can lot in por manorita non ou accarati					[m]	[m]	[kg/m3]	[daN/m2]
Barriera vapore			1		1	0,01	200	2
Lana di roccia Rockwool front roch energy sp. 16 cm			1		1	0,16	150	24
Manto di copertura in Riverclack						- , -		6
Pannelli fotovoltaici (Sunpower x22-360)								12
Sistema ancoraggio per pannelli fotocoltaici								23
Impiantistica interna								10
Arrotondamento								3,00
			Total	le				80,00
Carichi Accidentali			L		b	h	P.U.	Peso
			[m]		[m]	[m]	[kg/m3]	[daN/m2]
Carico Neve								80,00
Carichi permanenti Strutturali G	1		60,0	0	[daN/m2]		γG1 =	1,3
Carichi permanenti non strutturali G2			80,0	0	[daN/m2]		γG2 =	1,5
Totale Carichi Permanenti G1 + G	2		140,0	00	[daN/m2]			
Carichi Accidentali Qneve	1		80,0	0	[daN/m2]		γQ =	1,5
G1 =	60	[daN/m2]						
G2 =	80	[daN/m2]	Categoria azio	ne variabile	1	Ψ0	Ψ1	Ψ2
Qneve =	80	[daN/m2]	New	е		0,5	0,2	0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

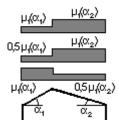
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev. Data					
Α	Ottobre 2020				
Pag. 48 di 109					

NEVE

Zona Neve = II
Periodo di ritorno, Tr = 50 anni
Ctr = 1 per Tr = 50 anni
Ce (coeff. di esposizione al vento) = 1,00
Valore caratteristico del carico al suolo = qsk Ce Ctr = 100 daN/mq

Copertura a due falde:


Angolo di inclinazione della falda α 1 = 1,1°

$$\mu 1(\alpha 1) = 0.80 \implies Q1 = 80 \text{ daN/mq}$$

Angolo di inclinazione della falda α 2 = 1,1°

$$\mu 1(\alpha 2) = 0.80 \implies Q2 = 80 \text{ daN/mq}$$

Schema di carico:

VENTO

Zona vento = 3 Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I) Altitudine base della zona, Ao = 500 m (Tab. 3.3.I) Altitudine del sito, As = 28 m Velocità di riferimento, Vb = 27,00 m/s (Vb = Vb.o per As \leq Ao) Periodo di ritorno, Tr = 50 anni Cr = 1 per Tr = 50 anni Velocità riferita al periodo di ritorno di progetto, Vr = Vb Cr = 27,00 m/s

Classe di rugosità del terreno: B [Aree urbane (non di classe A), suburbane, industriali e boschive]

Esposizione: Cat. IV - Entroterra fino a 500 m di altitudine (Kr = 0.22; Zo = 0.30 m; Zmin = 8 m) Pressione cinetica di riferimento, qb = 46 daN/mq

Coefficiente di forma, Cp = 1,00 Coefficiente dinamico, Cd = 1,00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 49 di 109					

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre in condizione sismica
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e precompressioni

Sono di tipo automatico A (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

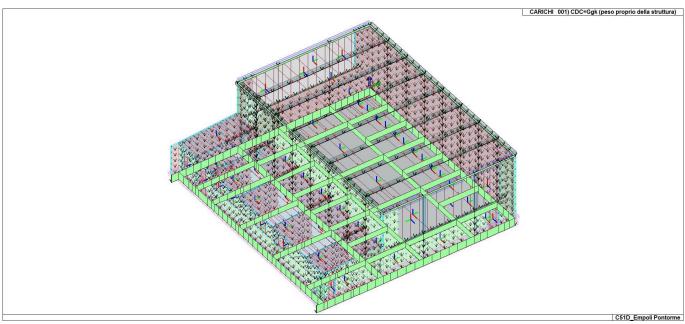
Sono di tipo semi-automatico SA (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo non automatico NA ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso: *Numero Tipo* e *Sigla identificativa*, *Valore di riferimento* del caso di carico (se previsto).

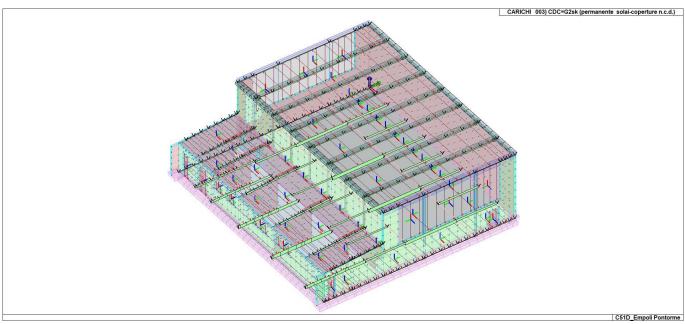

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

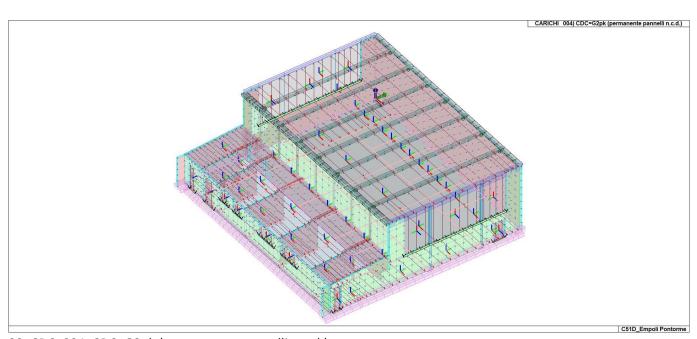
Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.


CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Gsk	CDC=G2pk (permanente pannelli n.c.d.)	
5	Qnk	CDC=Qnk (carico da neve)	
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=G2pk (permanente pannelli n.c.d.)
			partecipazione:1.00 per 5 CDC=Qnk (carico da neve)
7	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
13	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico
14	Qvk	CDC=Qvk (carico da vento) dir X +	Azioni applicate: p=3.04 daN/cmq
15	Qvk	CDC=Qvk (carico da vento) dir X -	Azioni applicate: p=3.04 daN/cmq
16	Qvk	CDC=Qvk (carico da vento) dir Y +	Azioni applicate: p=3.04 daN/cmq
17	Qvk	CDC=Qvk (carico da vento) dir Y -	Azioni applicate: p=3.04 daN/cmq

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

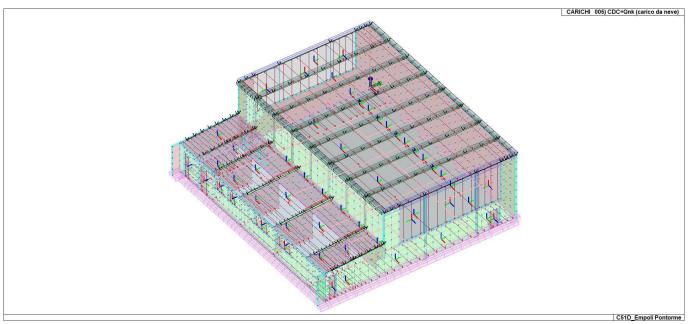
Documento:					
C51D_SR1A					
Rev. Data					
A Ottobre 2020					
Pag. 50 di 109					

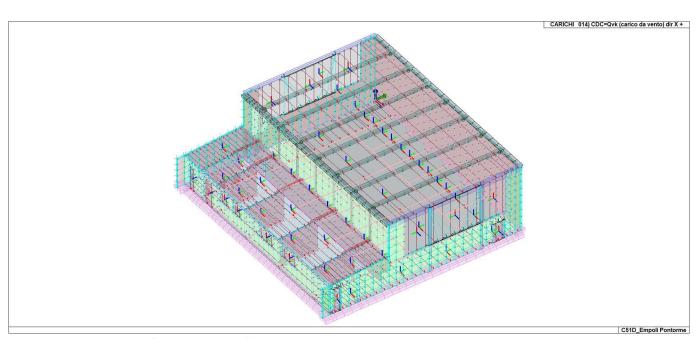

22_CDC_001_CDC=Ggk (peso proprio della struttura)


22_CDC_002_CDC=G1sk (permanente solai-coperture)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

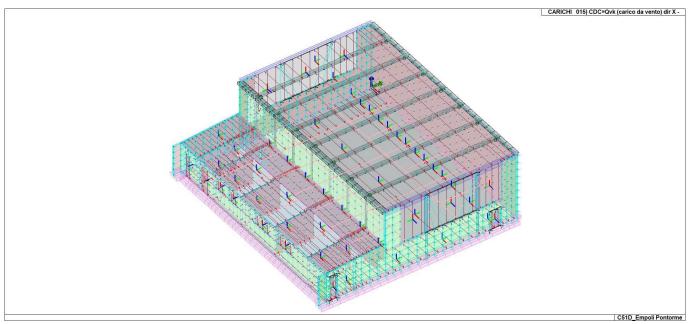
	Documento:		
	C51D_SR1A		
	Rev.	Data	
	Α	Ottobre 2020	
	Pag. 51 di 109		

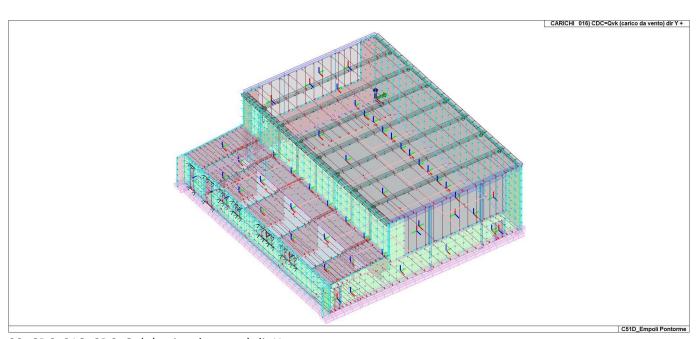

22_CDC_003_CDC=G2sk (permanente solai-coperture n.c.d.)


22_CDC_004_CDC=G2pk (permanente pannelli n.c.d.)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

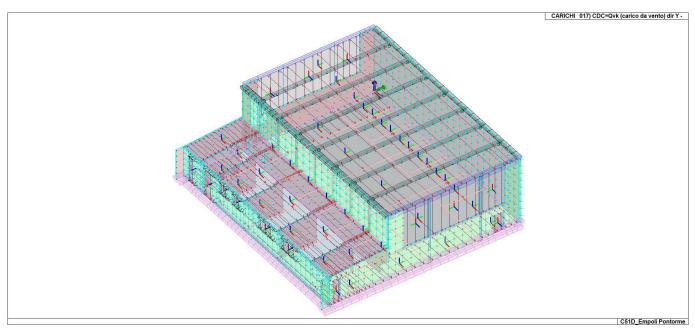
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 52 di 109		


22_CDC_005_CDC=Qnk (carico da neve)


22_CDC_014_CDC=Qvk (carico da vento) dir X +

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 53 di 109		


22_CDC_015_CDC=Qvk (carico da vento) dir X -

22_CDC_016_CDC=Qvk (carico da vento) dir Y +

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 54 di 109		

22_CDC_017_CDC=Qvk (carico da vento) dir Y -

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 55 di 109		

DEFINIZIONE DELLE COMBINAZIONI LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione		Ψ1	Ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)		0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

NTC 2018 Tabella 2.6.I

		Coefficiente γf	EQU	A1	A2
Carichi permanenti	Favorevoli Sfavorevoli	γG1	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γG2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

In totale si hanno 141 combinazioni così suddivise:

- 46 combinazioni SLU
- 32 combinazioni SLU (SLV sisma)
- 32 combinazioni SLE (SLD sisma)
- 1 combinazioni SLU (accidentali)
- 23 combinazioni SLE (rara)
- 6 combinazioni SLE (frequenti)
- 1 combinazioni SLE (permanenti)

⁻ per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),

⁻ per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 56 di 109		

Cmb	Tipo	Sigla Id
1	SLU	Comb. SLU A1 1
2	SLU	Comb. SLU A1 2
3	SLU	Comb. SLU A1 3
4	SLU	Comb. SLU A1 4
5 6	SLU SLU	Comb. SLU A1 5 Comb. SLU A1 6
7	SLU	Comb. SLU A1 7
	SLU	Comb. SLU A1 8
8 9	SLU	Comb. SLU A1 9
10	SLU	Comb. SLU A1 10
11	SLU	Comb. SLU A1 11
12	SLU	Comb. SLU A1 12
13	SLU	Comb. SLU A1 13
14	SLU	Comb. SLU A1 14
15	SLU	Comb. SLU A1 15
16	SLU	Comb. SLU A1 16
17	SLU	Comb. SLU A1 17
18	SLU	Comb. SLU A1 18
19	SLU	Comb. SLU A1 19
20	SLU	Comb. SLU A1 20
21	SLU	Comb. SLU A1 21
22	SLU	Comb. SLU A1 22
23	SLU	Comb. SLU A1 23
24 25	SLU	Comb. SLU A1 24
25 26	SLU SLU	Comb. SLU A1 25 Comb. SLU A1 26
26 27		Comb. SLU A1 27
28	SLU SLU	Comb. SLU A1 28
29	SLU	Comb. SLU A1 29
30	SLU	Comb. SLU A1 30
31	SLU	Comb. SLU A1 31
32	SLU	Comb. SLU A1 32
33	SLU	Comb. SLU A1 33
34	SLU	Comb. SLU A1 34
35	SLU	Comb. SLU A1 35
36	SLU	Comb. SLU A1 36
37	SLU	Comb. SLU A1 37
38	SLU	Comb. SLU A1 38
39	SLU	Comb. SLU A1 39
40	SLU	Comb. SLU A1 40
41	SLU	Comb. SLU A1 41
42	SLU SLU	Comb. SLU A1 42 Comb. SLU A1 43
43 44	SLU	Comb. SLU A1 43 Comb. SLU A1 44
44 45	SLU	Comb. SLU A1 45
46	SLU	Comb. SLU A1 46
47	SLU	Comb. SLU A1 (SLV sism.) 47
48	SLU	Comb. SLU A1 (SLV sism.) 48
49	SLU	Comb. SLU A1 (SLV sism.) 49
50	SLU	Comb. SLU A1 (SLV sism.) 50
51	SLU	Comb. SLU A1 (SLV sism.) 51
52	SLU	Comb. SLU A1 (SLV sism.) 52
53	SLU	Comb. SLU A1 (SLV sism.) 53
54	SLU	Comb. SLU A1 (SLV sism.) 54
55	SLU	Comb. SLU A1 (SLV sism.) 55
56	SLU	Comb. SLU A1 (SLV sism.) 56
57	SLU	Comb. SLU A1 (SLV sism.) 57
58	SLU	Comb. SLU A1 (SLV sism.) 58
59	SLU	Comb. SLU A1 (SLV sism.) 59
60	SLU	Comb. SLU A1 (SLV sism.) 60
61	SLU	Comb. SLU A1 (SLV sism.) 61
62	SLU	Comb. SLU A1 (SLV sism.) 62
63 64	SLU SLU	Comb. SLU A1 (SLV sism.) 63
65	SLU	Comb. SLU A1 (SLV sism.) 64 Comb. SLU A1 (SLV sism.) 65
66	SLU	Comb. SLU A1 (SLV sism.) 66
67	SLU	Comb. SLU A1 (SLV sism.) 67
68	SLU	Comb. SLU A1 (SLV sism.) 68
JU	OLU	DOTTION OLD AT (OLV SISTIL) 00

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:								
C51D_SR1A								
Rev. Data								
Α	Ottobre 2020							
Pag. 57 di 109								
Pag. 57 di 109								

Cmb Tipo Sigla Id 69 SLU Comb. SLU A1 (SLV sism.) 70 71 SLU Comb. SLU A1 (SLV sism.) 71 72 SLU Comb. SLU A1 (SLV sism.) 72 73 SLU Comb. SLU A1 (SLV sism.) 73 74 SLU Comb. SLU A1 (SLV sism.) 74 75 SLU Comb. SLU A1 (SLV sism.) 75 76 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLE (SLD Danno sism.) 79 80 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 83 83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 91			
70 SLU Comb. SLU A1 (SLV sism.) 70 71 SLU Comb. SLU A1 (SLV sism.) 71 72 SLU Comb. SLU A1 (SLV sism.) 72 73 SLU Comb. SLU A1 (SLV sism.) 73 74 SLU Comb. SLU A1 (SLV sism.) 75 75 SLU Comb. SLU A1 (SLV sism.) 76 76 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLU A1 (SLV sism.) 78 79 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 83 83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 84 SLD(sis) Comb. SLE (SLD Danno sism.) 86 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 86 SLD(sis) Comb. SLE (SLD Danno sism.) 88 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 99 91 SLD(sis) Comb. S	Cmb	Tipo	Sigla Id
71 SLU Comb. SLU A1 (SLV sism.) 71 72 SLU Comb. SLU A1 (SLV sism.) 72 73 SLU Comb. SLU A1 (SLV sism.) 74 74 SLU Comb. SLU A1 (SLV sism.) 75 76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLU A1 (SLV sism.) 78 79 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 99 90 SLD(sis) Comb. SLE (SLD Danno sism.) 99 91 SLD(sis) Comb. SLE (SLD Danno sism.) 99 92 SLD(sis) <td< td=""><td></td><td></td><td></td></td<>			
72 SLU Comb. SLU A1 (SLV sism.) 72 73 SLU Comb. SLU A1 (SLV sism.) 73 74 SLU Comb. SLU A1 (SLV sism.) 75 75 SLU Comb. SLU A1 (SLV sism.) 76 76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLE (SLD Danno sism.) 79 80 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 81 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 99 91 SLD(sis) Comb. SLE (SLD Danno sism.) 99 92 SLD(sis) Comb. SLE (SLD Danno sism.) 99 93 SLD(sis)			
73 SLU Comb. SLU A1 (SLV sism.) 73 74 SLU Comb. SLU A1 (SLV sism.) 74 75 SLU Comb. SLU A1 (SLV sism.) 75 76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 78 78 SLD (sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 83 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis)			`
74 SLU Comb. SLU A1 (SLV sism.) 75 76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLU A1 (SLV sism.) 78 79 SLD(sis) Comb. SLE (SLD Danno sism.) 80 80 SLD(sis) Comb. SLE (SLD Danno sism.) 81 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 83 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 88 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 99 92 SLD(sis) Comb. SLE (SLD Danno sism.) 99 93 SLD(sis) Comb. SLE (SLD Danno sism.) 91 94 S	_		
75 SLU Comb. SLU A1 (SLV sism.) 75 76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLU A1 (SLV sism.) 78 79 SLD(sis) Comb. SLE (SLD Danno sism.) 80 80 SLD(sis) Comb. SLE (SLD Danno sism.) 81 81 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 S			
76 SLU Comb. SLU A1 (SLV sism.) 76 77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU Comb. SLE (SLD Danno sism.) 79 80 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 89 91 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 96 95 SLD(sis	_		Comb. SLU A1 (SLV sism.) 74
77 SLU Comb. SLU A1 (SLV sism.) 77 78 SLU (comb. SLE (SLD Danno sism.) 78 79 SLD(sis) (comb. SLE (SLD Danno sism.) 80 81 SLD(sis) (comb. SLE (SLD Danno sism.) 81 82 SLD(sis) (comb. SLE (SLD Danno sism.) 81 83 SLD(sis) (comb. SLE (SLD Danno sism.) 83 84 SLD(sis) (comb. SLE (SLD Danno sism.) 84 85 SLD(sis) (comb. SLE (SLD Danno sism.) 84 86 SLD(sis) (comb. SLE (SLD Danno sism.) 86 87 SLD(sis) (comb. SLE (SLD Danno sism.) 86 88 SLD(sis) (comb. SLE (SLD Danno sism.) 87 88 SLD(sis) (comb. SLE (SLD Danno sism.) 88 89 SLD(sis) (comb. SLE (SLD Danno sism.) 89 90 SLD(sis) (comb. SLE (SLD Danno sism.) 90 91 SLD(sis) (comb. SLE (SLD Danno sism.) 91 92 SLD(sis) (comb. SLE (SLD Danno sism.) 92 93 SLD(sis) (comb. SLE (SLD Danno sism.) 93 94 SLD(sis) (comb. SLE (SLD Danno sism.) 94 95 SLD(sis) (comb. SLE (SLD Danno sism.) 95 96 SLD(sis) (comb. SLE (SLD Danno sism.) 96 97 SLD(sis) (comb. SLE (SLD Danno sism.) 106			
78 SLU (comb. SLU A1 (SLV sism.) 78 79 SLD(sis) (comb. SLE (SLD Danno sism.) 79 80 SLD(sis) (comb. SLE (SLD Danno sism.) 80 81 SLD(sis) (comb. SLE (SLD Danno sism.) 81 82 SLD(sis) (comb. SLE (SLD Danno sism.) 82 83 SLD(sis) (comb. SLE (SLD Danno sism.) 84 84 SLD(sis) (comb. SLE (SLD Danno sism.) 85 86 SLD(sis) (comb. SLE (SLD Danno sism.) 86 87 SLD(sis) (comb. SLE (SLD Danno sism.) 86 87 SLD(sis) (comb. SLE (SLD Danno sism.) 88 89 SLD(sis) (comb. SLE (SLD Danno sism.) 89 90 SLD(sis) (comb. SLE (SLD Danno sism.) 90 91 SLD(sis) (comb. SLE (SLD Danno sism.) 90 92 SLD(sis) (comb. SLE (SLD Danno sism.) 91 92 SLD(sis) (comb. SLE (SLD Danno sism.) 92 93 SLD(sis) (comb. SLE (SLD Danno sism.) 93 94 SLD(sis) (comb. SLE (SLD Danno sism.) 93 95 SLD(sis) (comb. SLE (SLD Danno sism.) 94 95 SLD(sis) (comb. SLE (SLD Danno sism.) 95 96 SLD(sis) (comb. SLE (SLD Danno sism.) 96 97 SLD(sis) (comb. SLE (SLD Danno sism.) 97			
79 SLD(sis) Comb. SLE (SLD Danno sism.) 79 80 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 84 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 91 93 SLD(sis) Comb. SLE (SLD Danno sism.) 92 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 95 SLD(sis) Comb. SLE (SLD Danno sism.) 94 96 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 102			
80 SLD(sis) Comb. SLE (SLD Danno sism.) 80 81 SLD(sis) Comb. SLE (SLD Danno sism.) 81 82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 90 92 SLD(sis) Comb. SLE (SLD Danno sism.) 91 93 SLD(sis) Comb. SLE (SLD Danno sism.) 92 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 100			
81 SLD(sis) Comb. SLE (SLD Danno sism.) 82 82 SLD(sis) Comb. SLE (SLD Danno sism.) 83 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 95 SLD(sis) Comb. SLE (SLD Danno sism.) 94 96 SLD(sis) Comb. SLE (SLD Danno sism.) 95 97 SLD(sis) Comb. SLE (SLD Danno sism.) 96 98 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 100 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 <tr< td=""><td></td><td></td><td></td></tr<>			
82 SLD(sis) Comb. SLE (SLD Danno sism.) 82 83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 86 86 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 90 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 91 93 SLD(sis) Comb. SLE (SLD Danno sism.) 92 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 100 <tr< td=""><td></td><td>· · · ·</td><td></td></tr<>		· · · ·	
83 SLD(sis) Comb. SLE (SLD Danno sism.) 84 84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 99 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 92 94 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 <tr< td=""><td></td><td></td><td></td></tr<>			
84 SLD(sis) Comb. SLE (SLD Danno sism.) 84 85 SLD(sis) Comb. SLE (SLD Danno sism.) 85 86 SLD(sis) Comb. SLE (SLD Danno sism.) 87 87 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 94 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 103 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103	83		
86 SLD(sis) Comb. SLE (SLD Danno sism.) 86 87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 92 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 104 104 SLD(sis) Comb. SLE (SLD Danno sism.) 106	84	SLD(sis)	
87 SLD(sis) Comb. SLE (SLD Danno sism.) 87 88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 90 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 99 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 106 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 <td>85</td> <td>SLD(sis)</td> <td>Comb. SLE (SLD Danno sism.) 85</td>	85	SLD(sis)	Comb. SLE (SLD Danno sism.) 85
88 SLD(sis) Comb. SLE (SLD Danno sism.) 88 89 SLD(sis) Comb. SLE (SLD Danno sism.) 89 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 99 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 <td>86</td> <td>SLD(sis)</td> <td>Comb. SLE (SLD Danno sism.) 86</td>	86	SLD(sis)	Comb. SLE (SLD Danno sism.) 86
89 SLD(sis) Comb. SLE (SLD Danno sism.) 90 90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 94 94 SLD(sis) Comb. SLE (SLD Danno sism.) 95 95 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 99 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 103 105 SLD(sis) Comb. SLE (SLD Danno sism.) 106 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107	87	SLD(sis)	Comb. SLE (SLD Danno sism.) 87
90 SLD(sis) Comb. SLE (SLD Danno sism.) 90 91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 95 95 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 99 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 106 106 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108			
91 SLD(sis) Comb. SLE (SLD Danno sism.) 91 92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 96 96 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 99 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 100 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (sLD Danno sism.) 108		1 1	
92 SLD(sis) Comb. SLE (SLD Danno sism.) 92 93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 99 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 <td></td> <td>· · · /</td> <td>Comb. SLE (SLD Danno sism.) 90</td>		· · · /	Comb. SLE (SLD Danno sism.) 90
93 SLD(sis) Comb. SLE (SLD Danno sism.) 93 94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (sanal sism.) 109			
94 SLD(sis) Comb. SLE (SLD Danno sism.) 94 95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 106 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (sl.) Danno sism.) 109 110 SLD(sis) Comb. SLE (rar			
95 SLD(sis) Comb. SLE (SLD Danno sism.) 95 96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (slade size size size size size size size siz	_		
96 SLD(sis) Comb. SLE (SLD Danno sism.) 96 97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLU(acc.) Comb. SLE (rara.) 112 112 SLE(r) Comb. SLE (rara.) 112		` '	
97 SLD(sis) Comb. SLE (SLD Danno sism.) 97 98 SLD(sis) Comb. SLE (SLD Danno sism.) 98 99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLU(acc.) Comb. SLE (slad Danno sism.) 109 110 SLD(sis) Comb. SLE (rara) 112 111 SLE(ri) Comb. SLE(rara) 112			
98			
99 SLD(sis) Comb. SLE (SLD Danno sism.) 100 100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (slad Danno sism.) 109 110 SLD(sis) Comb. SLE (rara) 112 111 SLE(ri) Comb. SLE(rara) 112 <td></td> <td></td> <td></td>			
100 SLD(sis) Comb. SLE (SLD Danno sism.) 100 101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLE(r) Comb. SLE (rara) 112 112 SLE(r) Comb. SLE (rara) 112 113 SLE(r) Comb. SLE(rara) 114		· · ·	
101 SLD(sis) Comb. SLE (SLD Danno sism.) 101 102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLE(st) Comb. SLE (san 112 111 SLE(st) Comb. SLE (rara) 112 112 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 117 118 <td></td> <td></td> <td></td>			
102 SLD(sis) Comb. SLE (SLD Danno sism.) 102 103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 109 111 SLU(acc.) Comb. SLE (slad Danno sism.) 109 111 SLE(r) Comb. SLE (rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 <t< td=""><td></td><td>· · · ·</td><td></td></t<>		· · · ·	
103 SLD(sis) Comb. SLE (SLD Danno sism.) 103 104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 110 111 SLE(s) Comb. SLE (sl.D Danno sism.) 110 111 SLE(s) Comb. SLE (rara) 112 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 1118 <t< td=""><td></td><td></td><td>,</td></t<>			,
104 SLD(sis) Comb. SLE (SLD Danno sism.) 104 105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (sLD Danno sism.) 110 111 SLE(r) Comb. SLE (rara) 112 113 SLE(r) Comb. SLE (rara) 112 113 SLE(r) Comb. SLE (rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 122			
105 SLD(sis) Comb. SLE (SLD Danno sism.) 105 106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 110 111 SLE(ric) Comb. SLE (Gana) 112 112 SLE(ri) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 122 122 SLE(r) <		` '	
106 SLD(sis) Comb. SLE (SLD Danno sism.) 106 107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLU (Accid.) 111 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 124 125		· · ·	,
107 SLD(sis) Comb. SLE (SLD Danno sism.) 107 108 SLD(sis) Comb. SLE (SLD Danno sism.) 108 109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLU (Accid.) 111 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 113 115 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 126 127 SLE(r)		· · · ·	
109 SLD(sis) Comb. SLE (SLD Danno sism.) 109 110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLU (Accid.) 111 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130	107		
110 SLD(sis) Comb. SLE (SLD Danno sism.) 110 111 SLU(acc.) Comb. SLU (Accid.) 111 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 127 <	108	SLD(sis)	Comb. SLE (SLD Danno sism.) 108
111 SLU(acc.) Comb. SLU (Accid.) 111 112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 127 128	109	SLD(sis)	Comb. SLE (SLD Danno sism.) 109
112 SLE(r) Comb. SLE(rara) 112 113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 128 129	110	SLD(sis)	Comb. SLE (SLD Danno sism.) 110
113 SLE(r) Comb. SLE(rara) 113 114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131	111	SLU(acc.)	Comb. SLU (Accid.) 111
114 SLE(r) Comb. SLE(rara) 114 115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 130 131			
115 SLE(r) Comb. SLE(rara) 115 116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 120 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132	113		
116 SLE(r) Comb. SLE(rara) 116 117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 130 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133			
117 SLE(r) Comb. SLE(rara) 117 118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134			
118 SLE(r) Comb. SLE(rara) 118 119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135	_		. ,
119 SLE(r) Comb. SLE(rara) 119 120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(rara) 135			Comb. SLE(rara) 11/
120 SLE(r) Comb. SLE(rara) 120 121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(rara) 135			
121 SLE(r) Comb. SLE(rara) 121 122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(rara) 135			
122 SLE(r) Comb. SLE(rara) 122 123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(rara) 135			
123 SLE(r) Comb. SLE(rara) 123 124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(rara) 135			
124 SLE(r) Comb. SLE(rara) 124 125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
125 SLE(r) Comb. SLE(rara) 125 126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135	_		
126 SLE(r) Comb. SLE(rara) 126 127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
127 SLE(r) Comb. SLE(rara) 127 128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
128 SLE(r) Comb. SLE(rara) 128 129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
129 SLE(r) Comb. SLE(rara) 129 130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
130 SLE(r) Comb. SLE(rara) 130 131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
131 SLE(r) Comb. SLE(rara) 131 132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			Comb. SLE(rara) 130
132 SLE(r) Comb. SLE(rara) 132 133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
133 SLE(r) Comb. SLE(rara) 133 134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135			
134 SLE(r) Comb. SLE(rara) 134 135 SLE(f) Comb. SLE(freq.) 135	133		
135 SLE(f) Comb. SLE(freq.) 135	134	SLE(r)	
136 SLE(f) Comb. SLE(freq.) 136		SLE(f)	Comb. SLE(freq.) 135
	136	SLE(f)	Comb. SLE(freq.) 136

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

,							
Documento:							
C51D_SR1A							
Rev.	Rev. Data						
A Ottobre 2020							
Pag. 58 di 109							

Cmb	Tipo	Sigla Id
137	SLE(f)	Comb. SLE(freq.) 137
138	SLE(f)	Comb. SLE(freq.) 138
139	SLE(f)	Comb. SLE(freq.) 139
140	SLE(f)	Comb. SLE(freq.) 140
141	SLE(p)	Comb. SLE(perm.) 141

	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28.
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	. = 0										
	1.30	1.30	1.50	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00	1.00	0.80	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0											
	1.30	1.30	1.50	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0											
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0			·								
)	1.00	1.00	0.80	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0											
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
•	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
2	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
	0.0	0.0	0.0	1.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
<u>, </u>	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
1				0.00	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1 50
4	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
	0.0	0.0	0.0	4.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0	0.00	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
<u> </u>	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.90
	0.0	0.0	0.0											
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
	1.30	1.30	1.50	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
)	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
	1.00	1.00	0.80	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
2	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.90	0.0	0.0											
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.50	0.0	0.0											
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.50	0.0	0.0											
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.50	0.0	0.0											
	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.50	0.0	0.0	0.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.90	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30	1.30	1.50	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.90	0.0											

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:
C51D_SR1A

Rev. Data

A Ottobre 2020

Pag. 59 di 109

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.90	0.0											
	1.00	1.00	0.80	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.30	0.90 1.30	0.0 1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.90	0.0	1.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.90	0.0	4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30 0.0	1.30 1.50	1.50 0.0	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	1.50	0.0											
	1.00 0.0	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.50	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	1.50	0.0	0.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0
	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.90	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30 0.0	1.30 0.0	1.50 0.90	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.90											
	1.00	1.00	0.80	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.30	0.0 1.30	0.90 1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.90	1.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.90	4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30 0.0	1.30 0.0	1.50 1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	1.50											
	1.00	1.00	0.80	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	0.0 1.00	1.50 0.80	0.80	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	1.50	0.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	4.00	0.0	4.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0
	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	0.0
_	0.0	0.0	0.0											
_	1.00	1.00 0.0	1.00	1.00	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	1.00	0.0 1.00	1.00	0.0	-1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.00	0.0	1.00	0.0	0.0	0.00	0.0			0.0	0.0
	1.00	1.00	1.00	1.00	0.0	-1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.0
_	0.0	0.0	0.0	1.00	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	0.0
54	1.00	1.00	1.00	1.00	0.0	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00	1.00	1.00	1.00	0.0	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.00	0.0	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0
59	1.00	1.00	1.00	1.00	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0						2.00					
62	1.00	1.00	1.00	1.00	0.0	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Docume	nto:								
C51D_SR1A									
Rev.	Rev. Data								
Δ	Ottobre 2020								
A	Ollobie 2020								
Pa	ag. 60 di 109								

Cmb		CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0		0.0		0.0	1100	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.00	0.0	0.50	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.00	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
68	1.00	1.00	1.00	1.00	0.0	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	1.00	0.0 1.00	1.00	0.0	0.0	0.20	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
_	1.00 0.0	0.0	0.0	1.00	0.0	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	4.00	0.0	0.00	0.0	0.0	4.00	0.0	0.0	0.0	0.0	0.0
	1.00 0.0	1.00 0.0	1.00	1.00	0.0	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	4.00	0.0	0.00	0.0	0.0	4.00	0.0	0.0	0.6	0.0	0.0
_	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
_	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
	1.00 0.0	1.00 0.0	1.00 0.0	1.00	0.0	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
_	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	0.0
	0.0	0.0	0.0											
_	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	0.0
_	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.00	0.0	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	0.0
	0.0 1.00	1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	0.0
	0.0	0.0	0.0	1.00	0.0	0.0	0.0		0.0	1.00	0.0	0.0	0.00	0.0
	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30	0.0
	0.0	0.0	0.0											
	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0	0.0
	0.0	0.0	0.0											
	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	0.0
	0.0	0.0	0.0	1.50	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.00	0.0	0.0
91	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0
	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.00	0.0
93	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0
	0.0 1.00	0.0 1.00	0.0 1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0
	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0
95	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0
	0.0	0.0	0.0											

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Section Columbia	Cmb		CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
0.0 0.0															
97 100 100 100 100 1.00 1.00 1.00 0.0 0.0					1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	0.0
98 1.00 1.00 1.00 1.00 1.00 0.	_				1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0	0.0
99 100 100 00 00 00 00 00 00 00 00 00 00 0		0.0	0.0	0.0											
99 100 100 100 100 100 0 0 0 0 0 0 0 0 0					1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	0.0
100 100															
100 100	_				1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	0.0
DO					1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	0.0
101 1.00 1.00 1.00 1.00 1.00 1.00 0.0 0.					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.50	1.00	0.0	0.0
102 1 00 1 00 1 00 1 00 1 00 0 0 0 0 0 0	_				1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	0.0
10		0.0	0.0	0.0											
103 100 100 100 100 100 00 00 00 00 00 00 0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	0.0
DO			_		4.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	4.00	0.0
104 100 1,00 1,00 1,00 0,0 0	_				1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	0.0
0.0					1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	0.0
0	-				1.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	1.00	0.0
106 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0	105	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00	0.0
DO	_		_												
107 1.00 1.00 1.00 1.00 1.00 0.0 0	_				1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00	0.0
108 100 100 100 100 100 0.0			_		1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.20	0.0	1.00	0.0
108 100 100 100 100 100 100 0 0 0 0 0 0	_				1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0
109 100 100 100 1.00 1.00 1.00 0.0 0			_		1.00	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0
10						0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0		0.0
110 1.00 1.00 1.00 1.00 1.00 0.0	109	1.00		1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0
111 1.00 1.00 1.00 1.00 1.00 0.0			_												
111 1.00 1.00 1.00 1.00 1.00 0.0 0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0
0.0	_				1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
112	_				1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
113 1.00 1.00 1.00 1.00 1.00 1.00 0.0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
114 1.00 1.00 1.00 1.00 1.00 0.50 0.0		0.0	0.0	0.0											
114 1.00 1.00 1.00 1.00 0.50 0.	_				1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	_				4.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
115 1.00 1.00 1.00 1.00 0.0					1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
116 1.00 1.00 1.00 1.00 1.00 1.00 0.0			_		1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60
117 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 1	_					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
117 1.00 1.00 1.00 1.00 0.0	116	1.00	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60
118 1.00 1.00 1.00 1.00 0.50 0.0	_														
118 1.00 1.00 1.00 1.00 0.0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
119 1.00 1.00 1.00 1.00 1.00 0.50 0.0	11Ω	1.00			1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
119 1.00 1.00 1.00 1.00 0.0					1.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
120 1.00 1.00 1.00 1.00 0.0			1.00		1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60
0.60 0.0 0.0 1.00 1.00 1.00 0.0															
121 1.00 1.00 1.00 1.00 0.0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.60 0.0 <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>1.00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>					1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
122 1.00 1.00 1.00 1.00 0.0					1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.60 0.0 <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>0.50</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>					1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00		0.60	0.0	0.0											
124 1.00 1.00 1.00 1.00 0.0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00					4.00	0.50	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0
125 1.00 1.00 1.00 0.0<					1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.60 0.0 1.00 1.00 0.0<					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
126 1.00 1.00 1.00 1.00 0.0						0.0	0.0	0.0	0.0	5.0	0.0	5.0	5.0	0.0	0.0
0.0 0.60 0.0 <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>1.00</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>					1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.60 0.0 128 1.00 1.00 1.00 0.0 </td <td></td> <td>0.0</td> <td></td>		0.0													
128 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0					1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 1.00 0.0					1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					1.00	0.0	0.0	0.0	0.0	0.0	U.U	0.0	0.0	U.U	U.U
					1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:								
C51D_SR1A								
Rev. Data								
A Ottobre 2020								
Pag. 62 di 109								

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
	0.0	1.00	0.0											
130	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.60											
131	1.00	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.60											
132	1.00	1.00	1.00	1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.60											
133	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	1.00											
134	1.00	1.00	1.00	1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	1.00											
135	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
136	1.00	1.00	1.00	1.00	0.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											
137	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.20
	0.0	0.0	0.0											
138	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.20	0.0	0.0											
139	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.20	0.0											
140	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.20											
141	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0											

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:							
C51D_SR1A							
Rev. Data							
A Ottobre 2020							
Pag. 63 di 109							

AZIONE SISMICA VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri della struttura					
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica
IV	100.0	2.0	200.0	С	T1

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella sequente Tabella

Categoria sottosuolo	S _s	C _c
Α	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm C}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:			
C51D_S	C51D_SR1A		
Rev.	Data		
Α	Ottobre 2020		
Pag. 64 di 109			

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

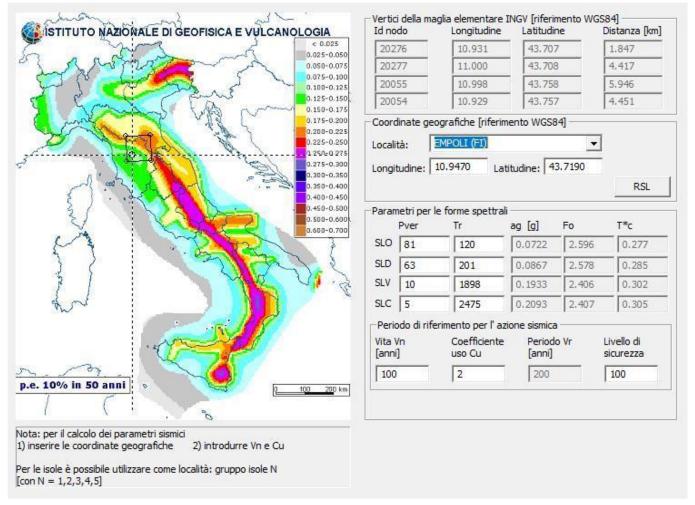
Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \\ T_C &\leq T < T_D & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

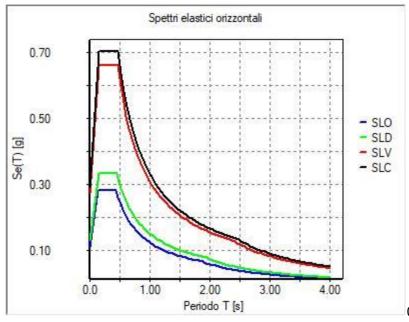
I valori di S_S, T_B, T_C e T_D, sono riportati nella seguenteTabella

· ·				
Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	10.947	43.719	
20276	10.931	43.707	1.847
20277	11.000	43.708	4.417
20055	10.998	43.758	5.946
20054	10.929	43.757	4.451


SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	120.0	0.072	2.596	0.277
SLD	63.0	201.0	0.087	2.578	0.285
SLV	10.0	1898.0	0.193	2.406	0.302
SLC	5.0	2475.0	0.209	2.407	0.305

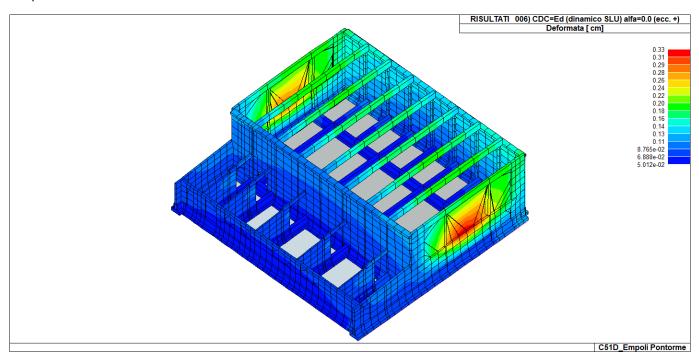
SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.072	1.500	2.596	0.942	0.148	0.444	1.889
SLD	0.087	1.500	2.578	1.025	0.151	0.453	1.947
SLV	0.193	1.421	2.406	1.428	0.157	0.471	2.373
SLC	0.209	1.398	2.407	1.487	0.158	0.474	2.437

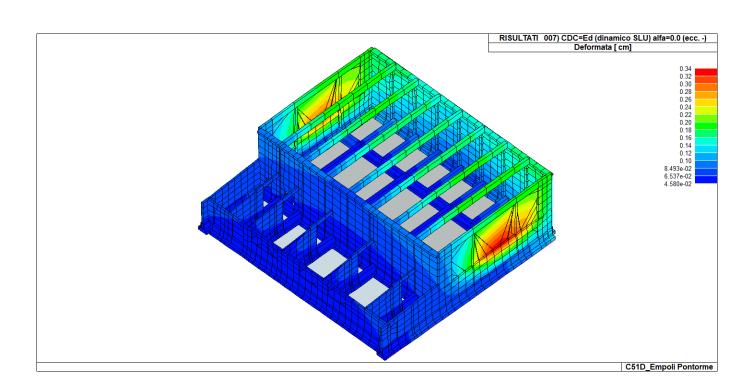

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 65 di 109		

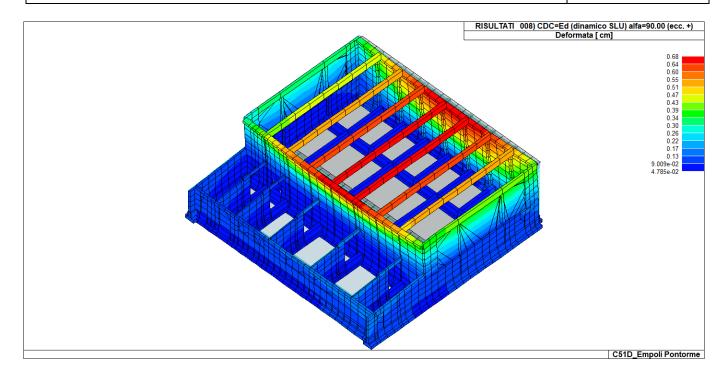
01_INT_PERICOLOSITA

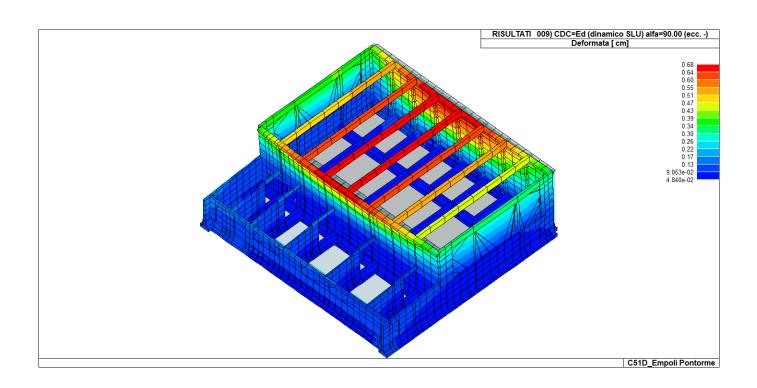

01_INT_SPETTRI_ELASTICI_O


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

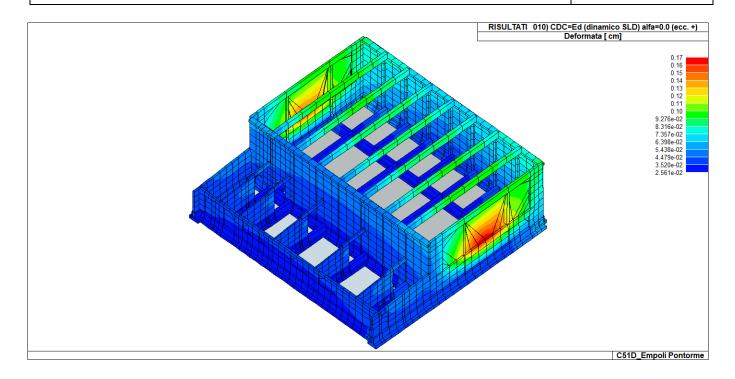
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

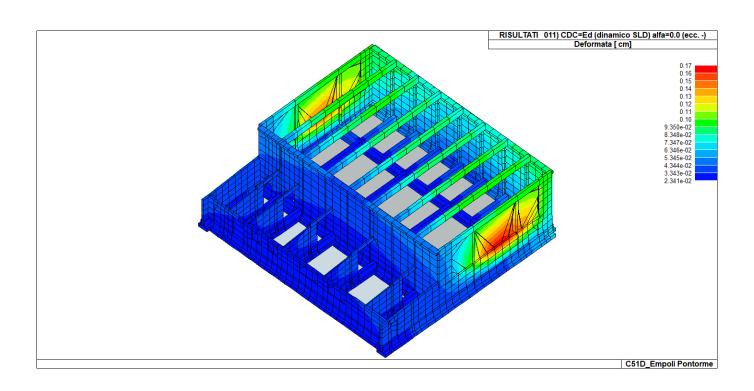
Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 66 di 109		


Si riportano le deformate dei casi di carico sismici a SLV e a SLD.

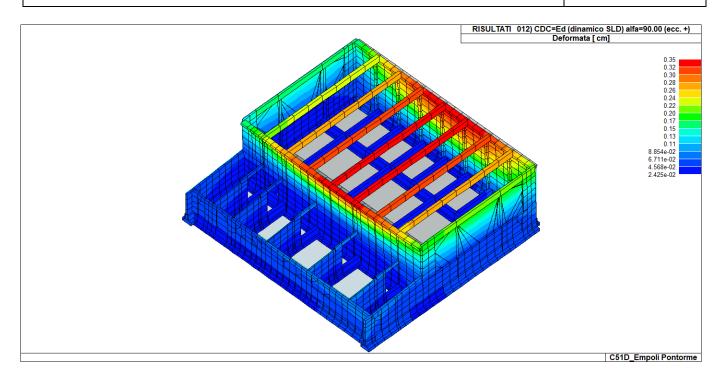


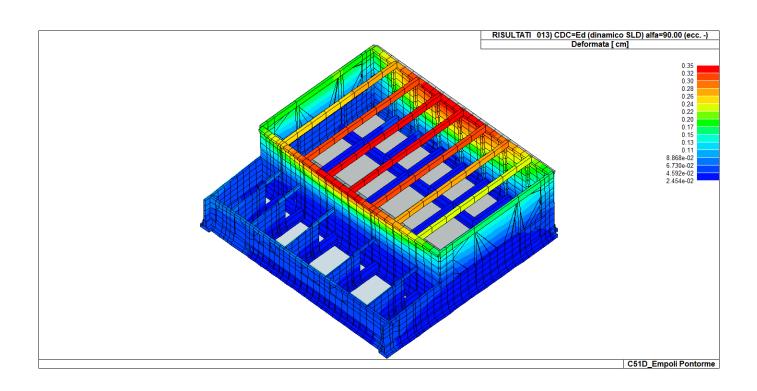
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:			
C51D_SR1A			
Rev. Data			
A Ottobre 2020			
Pag. 67 di 109			



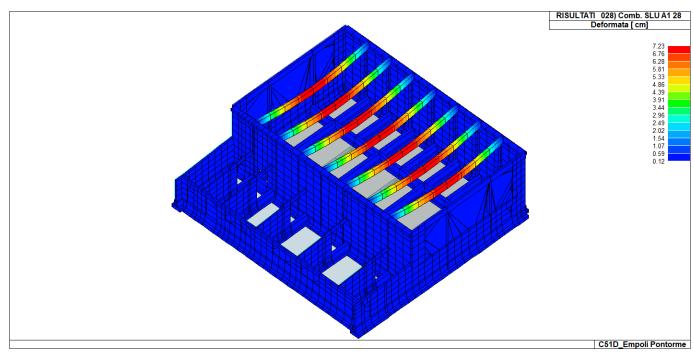
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

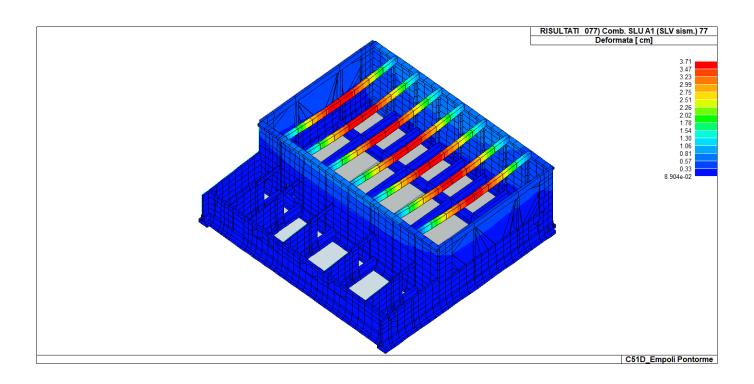

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 68 di 109		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

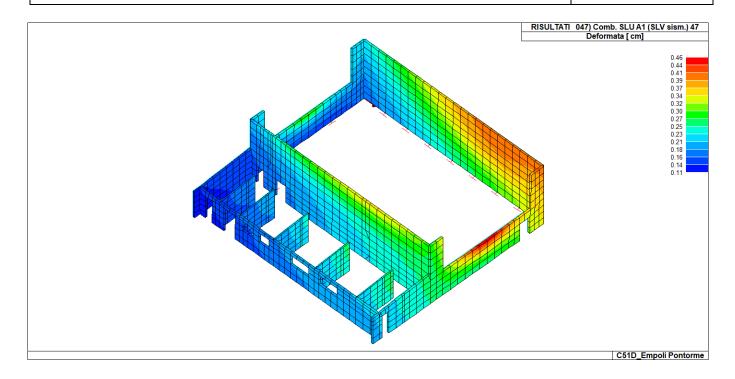
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 69 di 109		

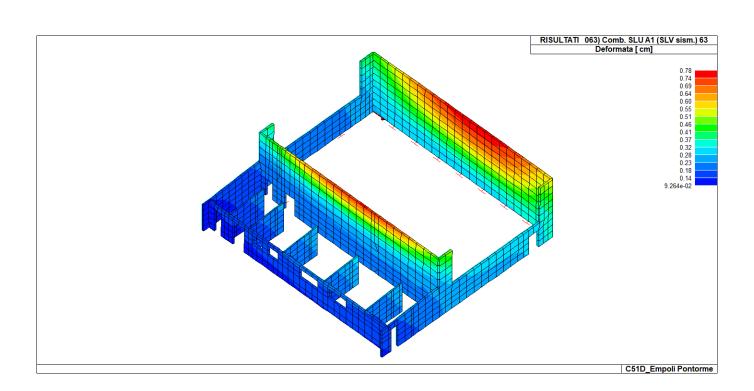

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

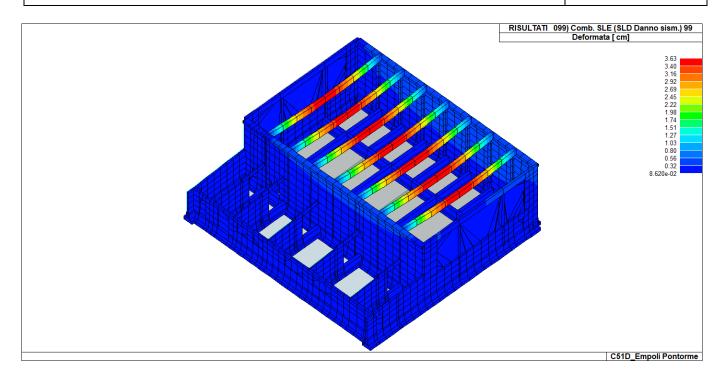
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 70 di 109		

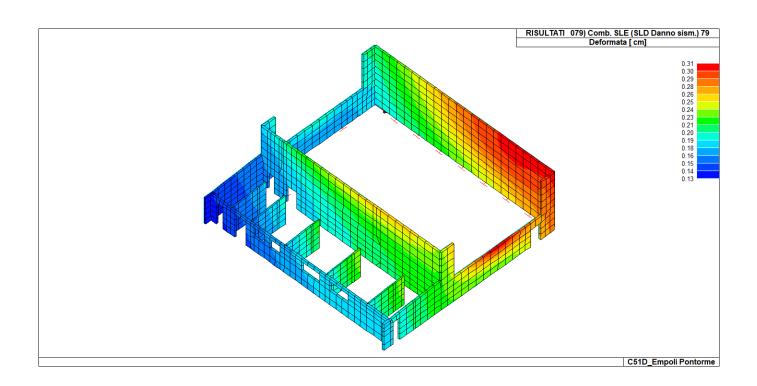
RISULTATI NODALI


Si riportano graficamente le deformate delle combinazioni più significative.

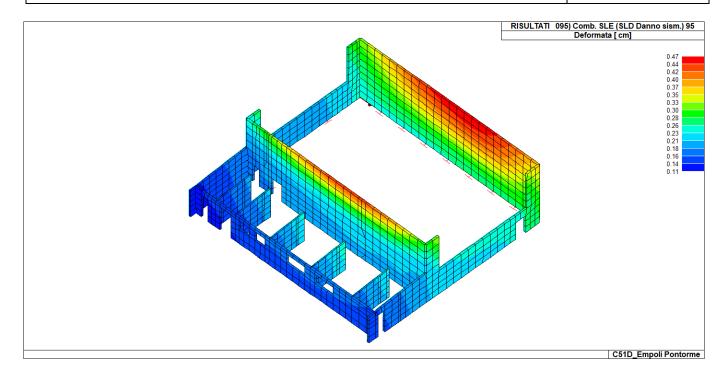


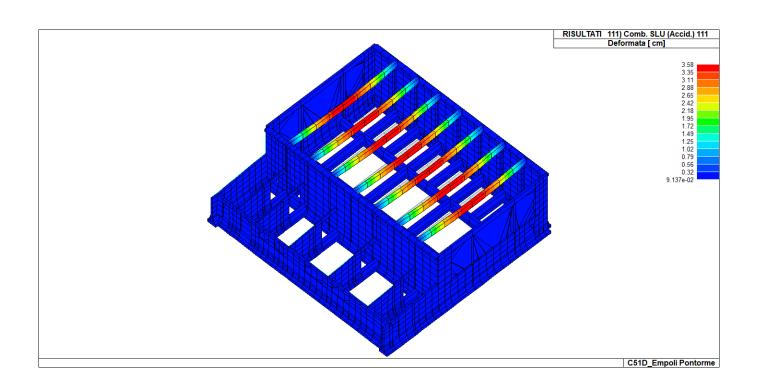
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 71 di 109	

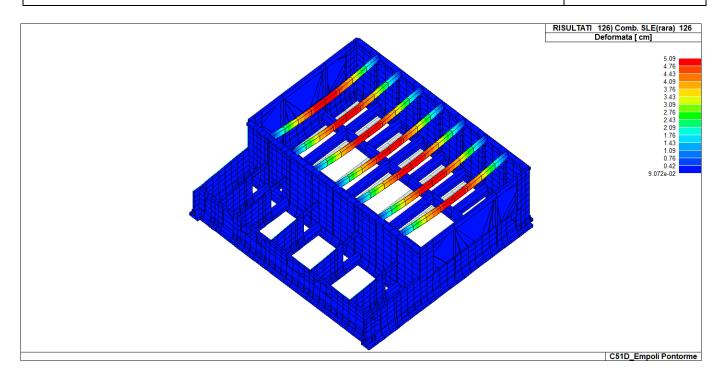


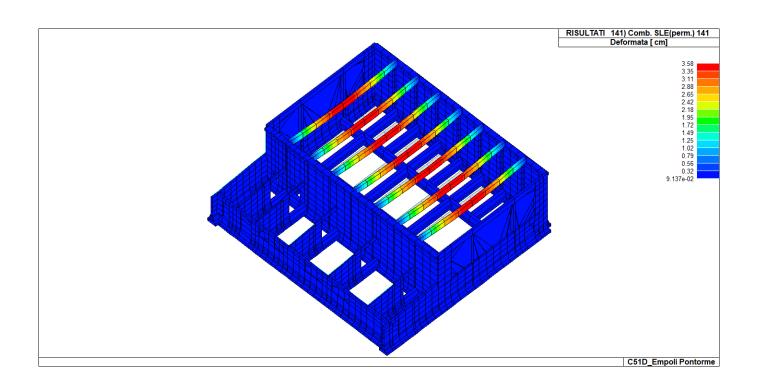
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 72 di 109		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 73 di 109		



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 74 di 109		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

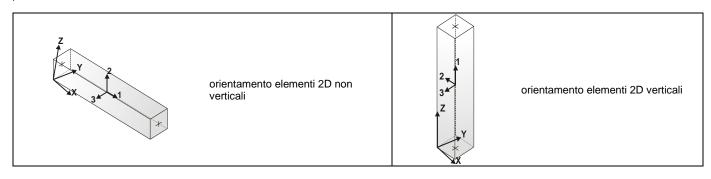
Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 75 di 109	

RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione

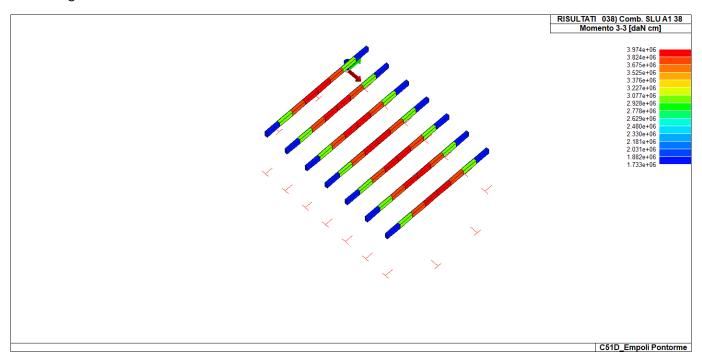

Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

Per gli elementi tipo pilastro sono riportati in tabella i seguenti valori:

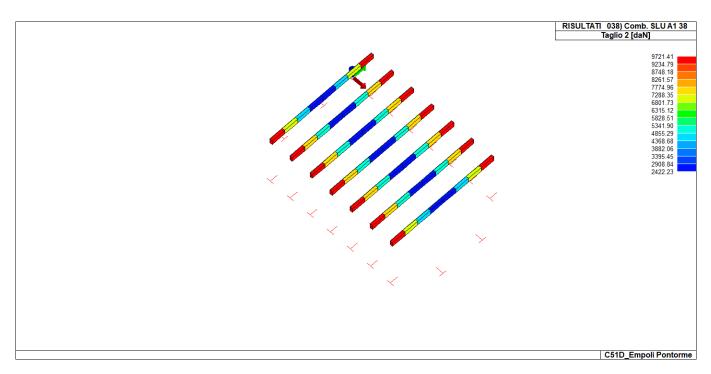
Pilas.	numero dell'elemento pilastro	
Cmb	combinazione in cui si verificano i valori riportati	
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)	
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)	
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)	
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)	
Pos.	ascissa del punto iniziale e finale dell'elemento	
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento	

Per gli elementi tipo trave in elevazione sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

Per gli elementi tipo trave in fondazione (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

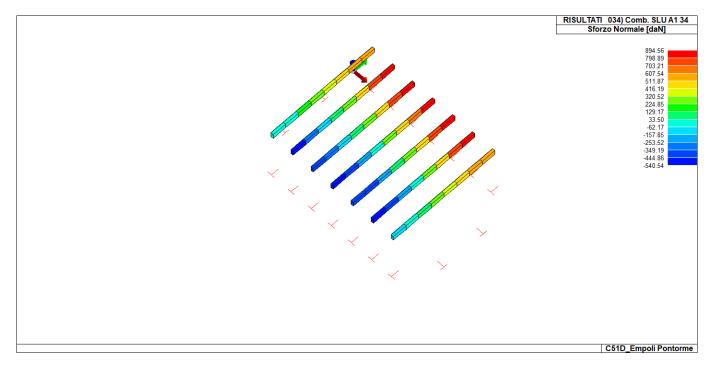


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

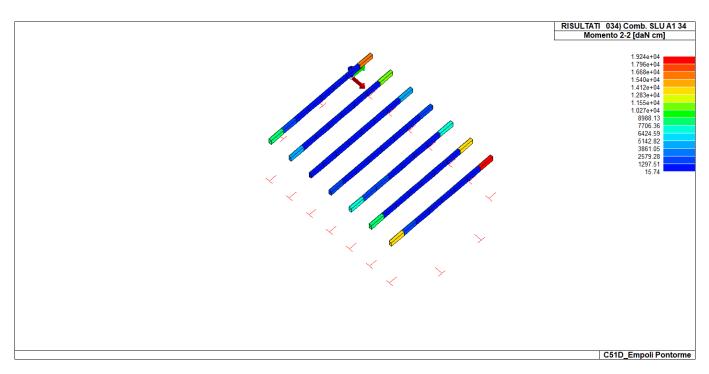

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rei	V.	Data
Α		Ottobre 2020
Pag. 76 di 109		

Travi in legno lamellare



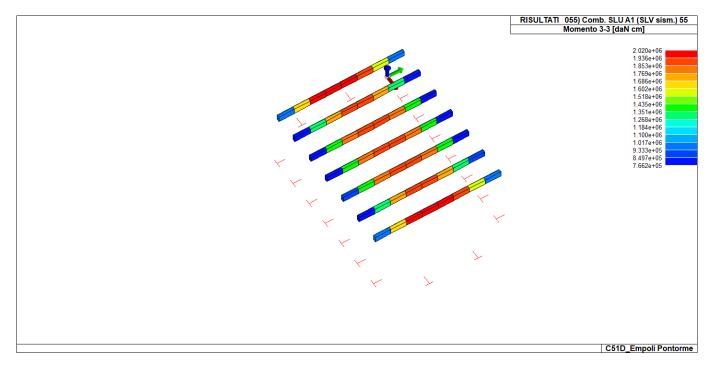
(MOMENTO MASSIMO POSITIVO M3 SLU)



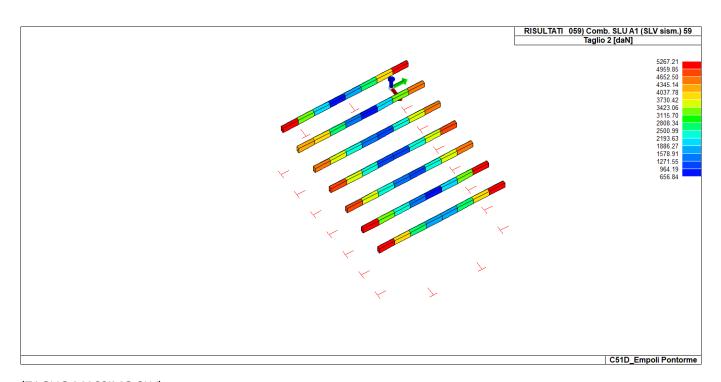
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

(SFORZO DI TRAZIONE MASSIMO SLU)



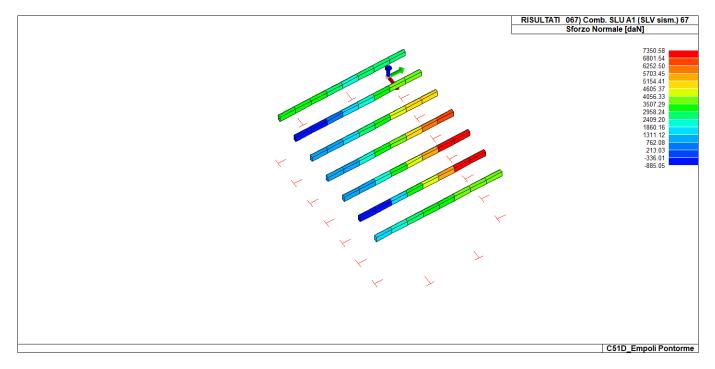
(MOMENTO MASSIMO POSITIVO M2 SLU)


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 78 di 109		

(MOMENTO MASSIMO POSITIVO M3 SLV)

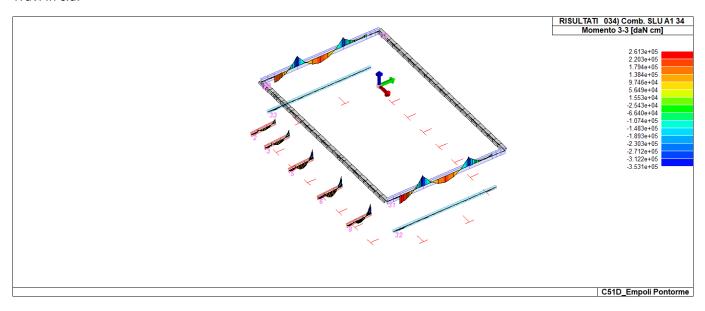


(TAGLIO MASSIMO SLV)

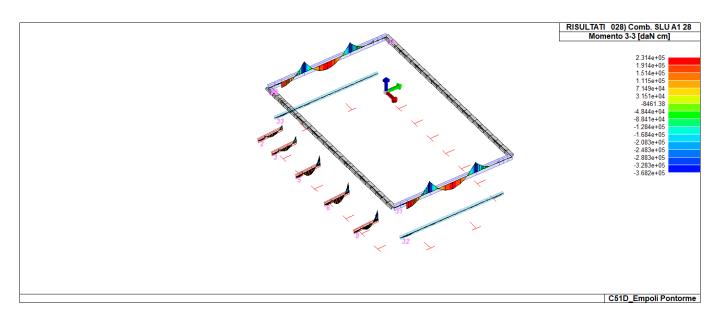
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 79 di 109	


(SFORZO DI TRAZIONE MASSIMO SLV)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

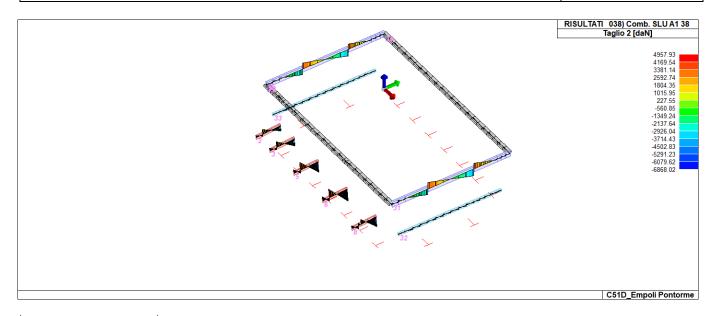
Documento:		
C51D_SR1A		
Rev.		Data
Α		Ottobre 2020
Pag. 80 di 109		

Travi in c.a.

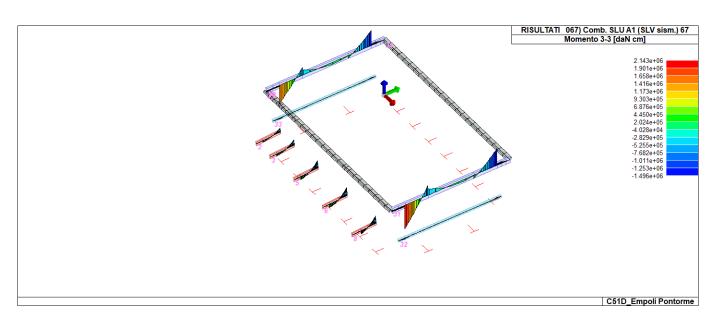
(MOMENTO MASSIMO POSITIVO M3 SLU)

(MOMENTO MASSIMO NEGATIVO M3 SLU)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

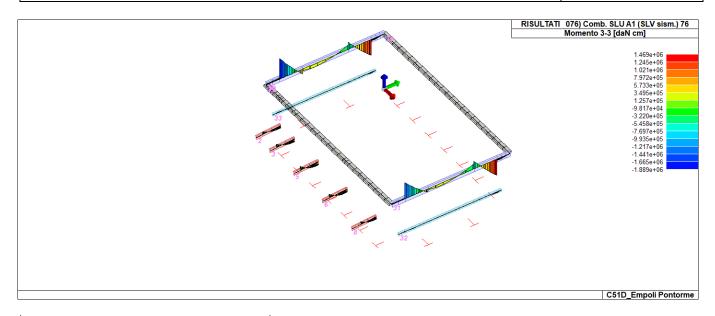
Documento:
C51D_SR1A


Rev. Data

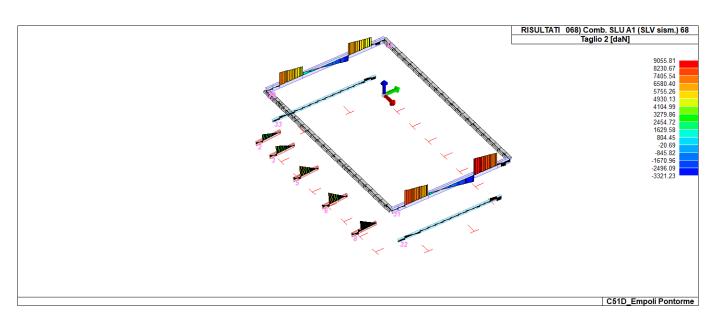
A Ottobre 2020

Pag. 81 di 109

(TAGLIO MASSIMO SLU)



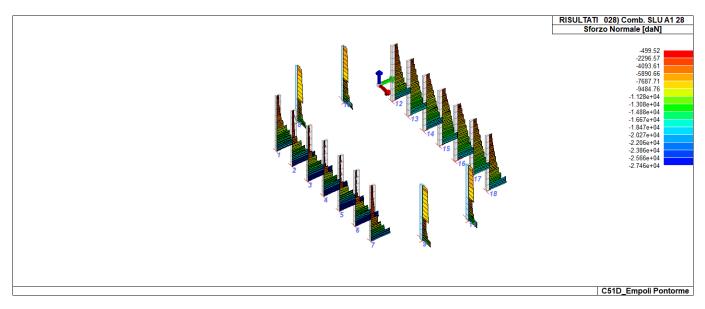
(MOMENTO MASSIMO POSITIVO M3 SLV)


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

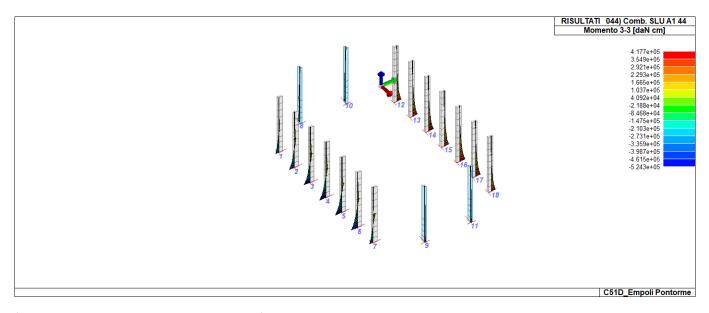
RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 82 di 109	

(MOMENTO MASSIMO NEGATIVO M3 SLV)


(TAGLIO MASSIMO SLV)

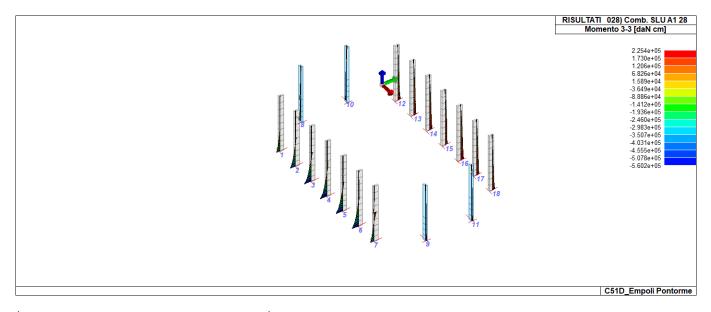
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

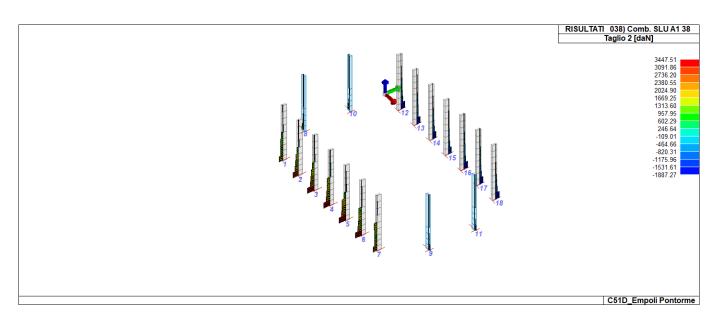
Documento:	
C51D_S	R1A
Rev.	Data
Α	Ottobre 2020
Pag. 83 di 109	

Pilastri in c.a.

(SFORZO DI COMPRESSIONE MASSIMO SLU)

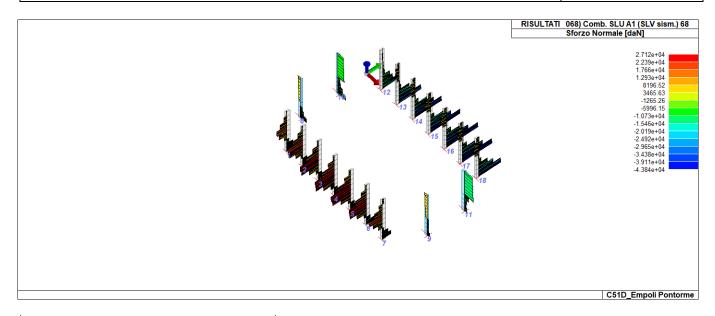


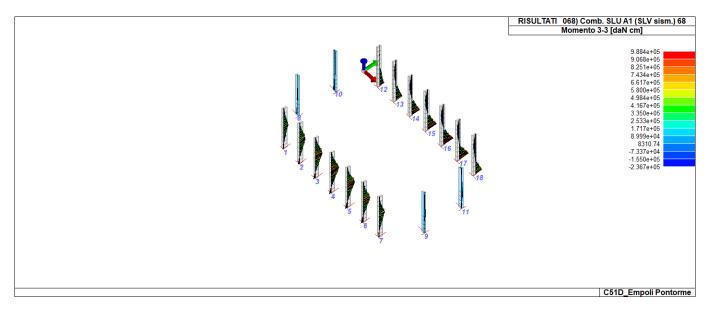
(MOMENTO MASSIMO POSITIVO M3 SLU)


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:	
C51D_SR1A	
Rev. Data	
A Ottobre 2020	
Pag. 84 di 109	

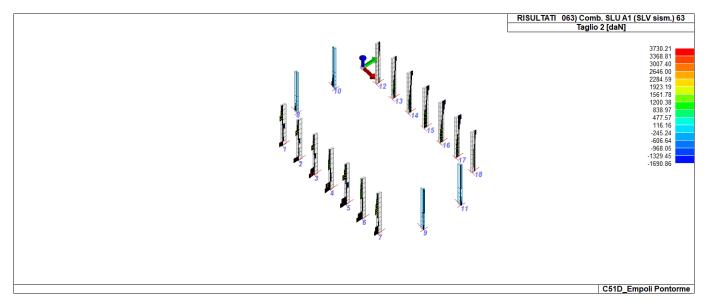

(MOMENTO MASSIMO NEGATIVO M3 SLU)


(TAGLIO MASSIMO SLU)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

(SFORZO DI COMPRESSIONE MASSIMO SLV)



(MOMENTO MASSIMO POSITIVO M3 SLV)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

	Documento:	
C51D_SR1A		R1A
	Rev.	Data
A Ottobre 2020		Ottobre 2020
	Pag. 86 di 109	

(TAGLIO MASSIMO SLV)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev. Data		
A Ottobre 2020		
Pag. 87 di 109		

RISULTATI ELEMENTI TIPO SHELL LEGENDA RISULTATI ELEMENTI TIPO SHELL

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo shell, è possibile in relazione alle tabelle sottoriportate. Per ogni elemento, e per ogni combinazione(o caso di carico) vengono riportati i risultati più significativi.

In particolare vengono riportati in ogni nodo di un elemento per ogni combinazione:

III particolaro	vongono nportati in ogi	in floate an arrelemente per egrir cembinazione.
tensione di V	on Mises	(valore riassuntivo del complessivo stato di sollecitazione)
N max		sforzo membranale principale massimo
N min		sforzo membranale principale minimo
M max		sforzo flessionale principale massimo
M min		sforzo flessionale principale minimo
N1	N2	sforzi membranali e flessionali in direzione locale 1 e 2 dell'elemento (lo sforzo 2-1 è
N1-2	M1	uguale allo sforzo 1-2 per la reciprocità delle tensioni tangenziali)
M2	M1-2	

I suddetti risultati possono a scelta del progettista essere preceduti o sostituiti da valori di sollecitazione non più riferiti al sistema locale dell'elemento ma al sistema globale.

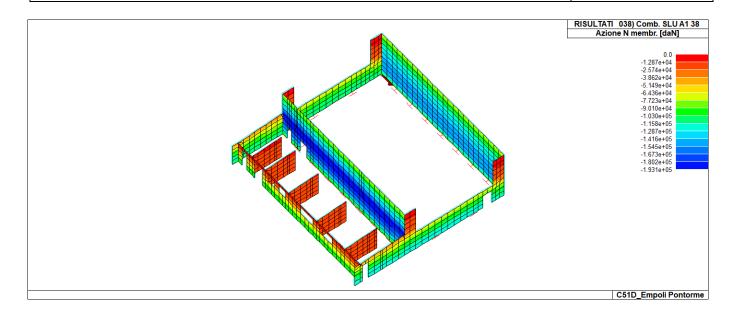
In questo caso gli elementi vengono raggruppati in gruppi (M_S: macro gusci o macro setti, raggruppati per materiale, spessore, e posizione fisica) per la valutazione dei valori mediati ai nodi appartenenti agli elementi dei gruppi stessi.

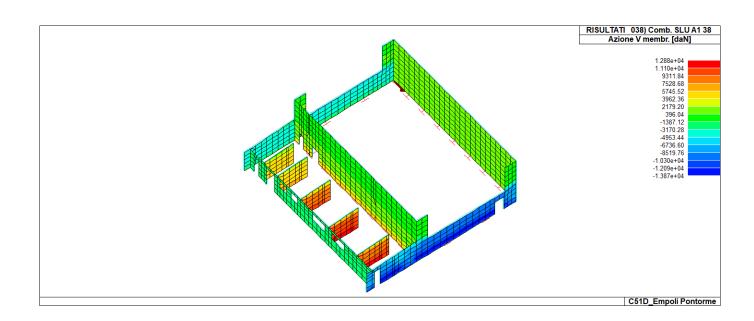
I valori di sollecitazione sono, in questo caso, riferiti ad una terna specifica del gruppo ruotata di α_0 attorno all'asse Z per i gusci e ruotata di α_V attorno alla normale (che per definizione è orizzontale) al piano del setto.


Per i setti, in particolare, se α_V è zero, l'asse '1-1 rappresenta la verticale e l'asse '2-2 l'orizzontale contenuta nel setto.

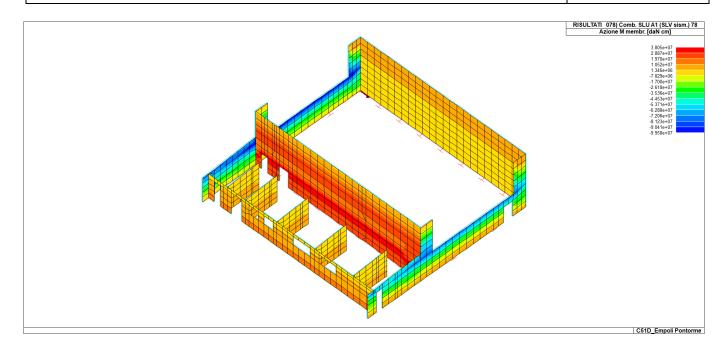
Le azioni sui setti possono essere espresse anche con formato macro, cioè riferite all'intero macroelemento.

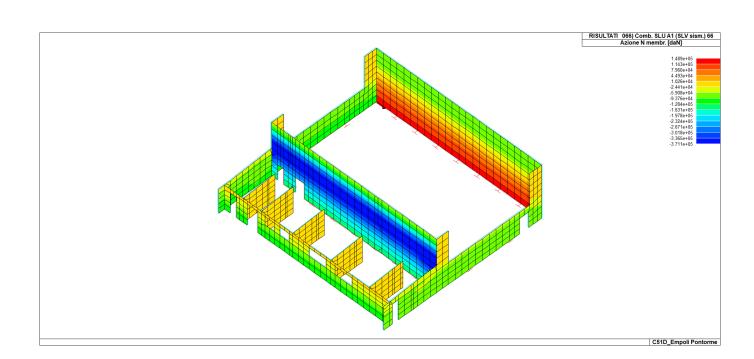
In particolare vengono riportati per ogni quota Z dei nodi e per ogni combinazione i seguenti valori:


N memb.	Azione membranale complessiva agente sulla parete in direzione Z
V memb.	Azione complessiva di taglio agente nel piano del macroelemento
V orto	Azione complessiva di taglio agente in direzione perpendicolare al macroelemento
M memb.	Azione flessionale complessiva agente nel piano del macroelemento
M orto	Azione flessionale complessiva agente in direzione perpendicolare al macroelemento
T	Azione torsionale complessiva agente nel piano orizzontale

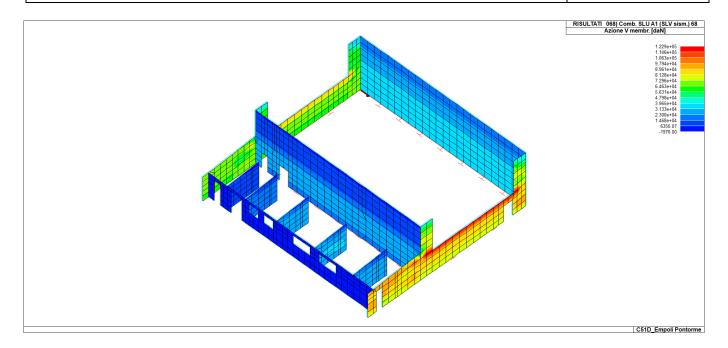

Si riportano graficamente le principli azioni che agiscono sulle pareti.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


_		
	Documento:	
	C51D_SR1A	
	Rev.	Data
	A Ottobre 2020	
	A Ottobre 2020	
	Pag. 88 di 109	



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 89 di 109	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 90 di 109		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 91 di 109		

VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.

Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (**T.A.**) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 92 di 109		

Simbologia adottata nelle tabelle di verifica

Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

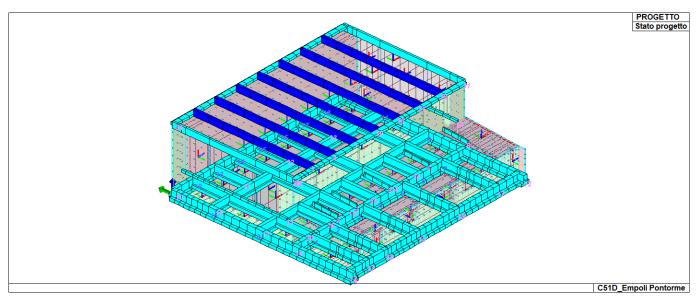
er le verifiche	agii o.e. dei pilastii e presente dha tabella con i simboli di seguito descritti.
M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ*: valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore
	minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

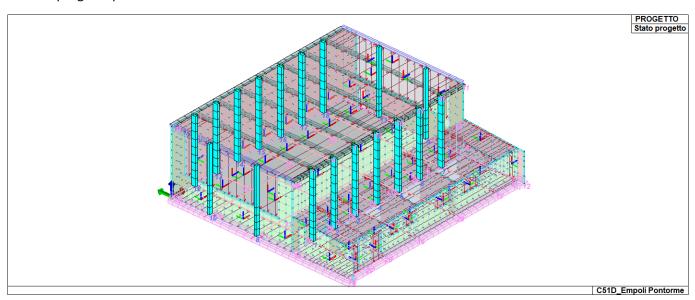
Per le verifiche a	igii S.L. delle travi e presente una tabella con i simboli di seguito descritti:
M_T Z P P	Numero della travata (T), quota media (Z), n° pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)
Trave	numero identificativo dell'elemento D2
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
Af inf.	Area di armatura longitudinale posta all'intradosso
Af sup	Area di armatura longitudinale posta all'estradosso
Af long.	Area complessiva armatura longitudinale
x/d	rapporto tra posizione dell'asse neutro e altezza utile
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave

					M_P= 1	X=320.0	Y=-1635.0					
Pilas.	Note	Stato	Quota	%Af	r. snell.	Armat. long.	V N/M	V N sis	Staffe	V V/T cls	V V/T acc	Rif. cmb
			cm						L=cm			
Pilas.				%Af	r. snell.		V N/M	V N sis		V V/T cls	V V/T acc	
				1.20	0.66		0.99	0.27		0.17	0.13	

							M_T= 9	Z=0.0	P=8	P=10			
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe	Rif. cmb	
		cm									L=cm		
Trave			%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc			
			0.82	22.90	22.90	18.10	0.19	1.16	0.56	1.00			


Di seguito si riporta graficamente lo stato di progetto degli elementi trave e pilastri in c.a., il colore celeste indica che l'elemento è verificato.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

	Documento:				
C51D_SR1A					
	Rev.	Data			
	Α	Ottobre 2020			
Pag. 93 di 109					

Stato di progetto travi in c.a.

Stato di progetto pilastri in c.a.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 94 di 109				

STATI LIMITE D' ESERCIZIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

- Combinazioni rare
- Combinazioni frequenti
- Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

i valon unin	eresse sono i seguenii.
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato
	a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi
	permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dΡ	massimi in campata
setti e gusci	rRfck	rRfyk	rPfck	massimi nei nodi dell'elemento
	wR	wF	wP	massimi nei nodi dell'elemento

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Pilas.	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	Pos.	rRfck	rRfyk	rPfck	Rif. cmb
	cm					cm				
Pilas.		rRfck	rRfyk	rPfck			rRfck	rRfyk	rPfck	
		0.23	0.13	0.28						

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	cm					mm	mm	mm		cm	cm	cm	
Trave		rRfck	rRfyk	rPfck		wR	wF	wP		dR	dF	dP	
										-0.40	-0.38	-0.37	
		0.21	0.33	0.23		0.05	0.05	0.05		0.41	0.38	0.38	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:				
C51D_S	R1A			
Rev.	Data			
Α	Ottobre 2020			
Pag. 95 di 109				

VERIFICHE ELEMENTI PARETE E/O GUSCIO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI PARETE E GUSCIO IN C.A.

Per le pareti in c.a., in ottemperanza al cap. 7 del DM 17-01-18, viene effettuata una doppia progettazione: sia come Singolo Elemento sia come Parete Sismica o Parete Debolmente Armata.

Per la progettazione come *Singolo Elemento* di ogni elemento vengono riportati il codice dello stato di verifica con le sigle **Ok e NV**, il rapporto x/d, la verifica per sollecitazioni ultime (verifica a compressione media gli sforzi membranali, verifica a presso-flessionale e verifica a sollecitazioni taglianti), gli sforzi membranali e flessionali, il quantitativo di armatura nella direzione principale e secondaria sia inferiore che superiore e il quantitativo di armatura a taglio.

Per la progettazione come *Parete Sismica* o *Parete Debolmente Armata* vengono riportate invece le caratteristiche geometriche della parete e delle zone dissipative (quest'ultime solo nel caso di parete sismica), i coefficienti di verifica a compressione assiale, pressoflessione e sollecitazioni taglianti.

Inoltre vengono riportate per ogni quota significativa l'armatura principale e secondaria, l'armatura in zona confinata (solo per parete sismica) e non confinata, l'armatura concentrata all'estremità (per pareti debolmente armate), lo sforzo assiale aggiuntivo per q superiore a 2 e i valori di inviluppo di taglio e momento. Per le pareti debolmente armate viene riportato anche lo stato di verifica relativo alla snellezza.

Le azioni derivate dall'analisi, in ogni combinazione di calcolo, sono elaborate come previsto al punto 7.4.4.5.1: traslazione del momento, incremento e variazione diagramma taglio, incremento e decremento sforzo assiale

La progettazione nel caso dei gusci viene effettuata una progettazione come Singolo Elemento, riportando in tabella il rapporto x/d, la verifica per sollecitazioni ultime, (verifica a compressione media gli sforzi membranali, verifica a presso-flessionale e verifica a sollecitazioni taglianti) di ogni elemento.

Per ogni elemento, viene riportata inoltre la maglia di armatura necessaria in relazione alle risultanze della progettazione dei nodi dell'elemento stesso. Le quantità di armature necessarie sono armature (disposte rispettivamente in direzione principale e secondaria, inferiore e superiore) distribuite nell'elemento ed espresse in centimetri quadri per sviluppo lineare pari ad un metro.

Nel caso dei gusci viene effettuata, inoltre, la verifica a punzonamento, riportando in tabella il codice dello stato di verifica, il coefficiente di verifica per piastre prive di armature a taglio lungo il perimetro resistente e lungo il perimetro del pilastro, coefficiente di incremento dovuto ai momenti flettenti, fattore di amplificazione per le fondazioni, il fattorei di amplificazione dell'altezza utile per individuare il perimetro di verifica lungo il quale l'armatura a taglio non è richiesta, il quantitativo di armatura a punzonamento, il numero di serie di armature, il numero di braccia di armatura ed il riferimento alla combinazione più gravosa.

Simbologia adottata nelle tabelle di verifica

Per gli elementi con progettazione "Singolo Elemento ..." è presente una tabella con i simboli di seguito descritti:

<u> </u>	The programment of the programme
Macro Guscio	Numero del macroelemento di tipo guscio (elementi non verticali contigui ed analoghi per proprietà)
Macro Setto	Numero del macroelemento di tipo setto (elementi verticali contigui ed analoghi per proprietà)
Spessore	Spessore della parete
Id Materiale	Codice del materiale assegnato all'elemento
Id Criterio	Codice del criterio di progetto assegnato all'elemento
Progettazione	Sigla tipo di Elemento: - Singolo Elemento; - Singolo Elemento FONDAZIONE; - Singolo Elemento NON DISSIPATIVO

Per le verifiche degli elementi con progettazione "Singolo Elemento ..." e Progettazione Composta è presente una tabella con i simboli di seguito descritti:

dito descritti.
numero del nodo
codice di verifica dell'elemento ok o NV
rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione (per sola flessione)
Verifica delle sollecitazioni Normali (momento e sforzo normale)
Rapporto Nd/Nu (Nu ottenuto con riduzione del 25% di fcd)
quantità di armatura richiesta in direzione principale relativa alla faccia positiva (estradosso piastre) (valore derivante da calcolo o minimo normativo)
quantità di armatura richiesta in direzione principale relativa alla faccia negativa (intradosso piastre) (valore derivante da calcolo o minimo normativo)
quantità di armatura richiesta in direzione secondaria relativa alla faccia positiva (estradosso piastre) (valore derivante da calcolo o minimo normativo)
quantità di armatura richiesta in direzione secondaria relativa alla faccia negativa (intradosso piastre) (valore derivante da calcolo o minimo normativo)
Sforzi membranali per pareti e\o setti verticali
Sforzi flessionali per pareti e\o setti verticali

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_S	51D_SR1A				
Rev.	Data				
Α	Ottobre 2020				
Pag. 96 di 109					

Nx	Ny	Nxy	Sforzi membranali per gusci orizzontali
Mx	Mx	Mxy	Sforzi flessionali per gusci orizzontali

Nodo	numero del nodo
Stato	codice di verifica dell'elemento ok o NV
Max tau	Tensione tangenziale Massima
Ver V pr	Verifica a taglio nella direzione principale lato calcestruzzo
Ver V sec	Verifica a taglio nella direzione secondaria lato calcestruzzo
Af V pr	Armatura nella direzione principale
V pr-	Verifica dell'armatura nella direzione principale
Af V sec	Armatura nella direzione secondaria
V sec-	Verifica dell'armatura nella direzione secondaria

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
1	25.00	1	5	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
1	ok	0.10	0.3	3.59e-02	11.3	11.3	9.0	9.0	-25.6	-16.2	-118.6	290.8	51.1	-152.6
2	ok	0.10	0.3	3.45e-02	11.3	11.3	9.0	9.0	-31.4	-22.3	107.0	280.0	54.5	146.5
18	ok	0.10	0.6	3.87e-02	5.7	5.7	4.5	4.5	-103.3	-14.7	80.6	-954.1	-142.9	-389.9
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Мz	Мо	M zo
									-550.61	-162.35	-122.68	-1542.75	-644.97	-618.93
		0.11	0.99	0.14	11.31	11.31	9.05	9.05	177.06	86.06	121.65	1925.03	643.72	631.42

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
1	ok	1.71						
2	ok	1.73						
18	ok	1.79						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		2.94						

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
2	25.00	1	5	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	M z	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
2	ok	0.10	0.7	3.80e-02	18.4	18.4	4.5	4.5	-27.0	-12.1	127.9	-182.3	11.0	147.2
3	ok	0.10	0.1	3.53e-02	5.7	5.7	4.5	4.5	-74.2	-6.2	58.8	-39.1	-34.7	40.4
31	ok	0.10	0.6	3.76e-02	18.4	18.4	4.5	4.5	8.8	108.5	148.2	-29.6	-105.5	4.3
 Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Nz	Νο	N zo	Μz	Мо	M zo
									-2058.14	-812.43	-327.40	-1750.93	-1027.81	-652.45
		0.17	0.99	0.43	31.10	31.10	24.88	24.88	353.03	452.40	544.24	1787.56	1408.16	501.46

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
2	ok	1.26						
3	ok	0.18						
31	ok	0.51						

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Docume	nto:					
C51D_SR1A						
Rev. Data						
A Ottobre 2020						
Pag. 97 di 109						

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
lodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		4.43			_			

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
3	15.00	1	6	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
41	ok	0.19	9.81e-02	7.53e-02	5.7	5.7	4.5	4.5	-89.2	-45.4	80.0	-5.3	-8.35e-03	10.0
730	ok	0.19	0.3	0.0	5.7	5.7	4.5	4.5	24.8	108.5	35.2	9.7	9.3	5.9
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									-477.76	-99.17	-153.19	-68.78	-47.77	-13.99
1		0.19	0.66	0.21	5.65	5.65	4.52	4.52	51.98	108.46	84.55	71.88	17.11	17.45

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
41	ok	0.17						
730	ok	0.45						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.50			_			

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
4	25.00	1	1	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	M z	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
1	ok	0.10	0.6	4.00e-02	18.4	18.4	4.5	14.7	-43.3	-12.2	126.9	164.9	-2.3	-135.7
16	ok	0.10	0.2	3.87e-02	5.7	5.7	4.5	4.5	-63.0	-39.9	78.2	-76.3	-60.4	30.0
17	ok	0.10	8.30e-02	4.01e-02	5.7	5.7	4.5	4.5	-93.0	-29.5	63.0	33.8	0.5	38.6
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									-1992.54	-744.04	-315.21	-1778.96	-1511.73	-565.14
		0.17	0.99	0.41	36.76	36.76	14.70	14.70	351.40	453.33	532.89	1417.67	1069.34	565.14

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
1	ok	1.12						
16	ok	0.23						
17	ok	0.15						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		4.76	5.73e-03	0.22	0.14	5.41	2.74	103.77

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
5	25.00	1	6	Singolo elemento

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pa	ag. 98 di 109				

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	No	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
19	ok	0.10	0.3	2.30e-02	5.7	5.7	4.5	4.5	-79.3	-15.7	-25.8	1373.1	335.5	-299.3
21	ok	0.10	0.2	2.19e-02	5.7	5.7	4.5	4.5	-68.2	32.1	21.7	750.9	-76.8	-217.0
22	ok	0.10	0.3	4.63e-02	5.7	5.7	4.5	4.5	-11.6	13.5	-25.6	-738.7	-242.5	489.2
 Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	No	N zo	Μz	Мо	M zo
									-728.17	-194.34	-192.00	-1321.21	-723.72	-830.72
		0.13	0.99	0.18	11.31	11.31	9.05	9.05	697.42	200.89	145.00	3851.46	917.34	1139.64

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
19	ok	0.20						
21	ok	0.18						
22	ok	2.24						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		10.96	0.50	0.16	12.38	4.07	237.64	78.16

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
6	15.00	1	6	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
39	ok	0.19	0.1	8.57e-02	5.7	5.7	4.5	4.5	-98.3	-54.0	92.4	-0.3	-5.5	-1.2
729	ok	0.19	0.4	0.0	5.7	5.7	4.5	4.5	20.9	122.3	41.2	2.0	7.8	1.4
836	ok	0.19	0.2	3.02e-02	5.7	5.7	4.5	4.5	-17.2	10.9	66.0	-18.5	-24.3	0.3
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	No	N zo	Μz	Мо	M zo
									-607.74	-156.41	-203.93	-53.25	-24.31	-12.24
		0.19	0.73	0.27	5.65	5.65	4.52	4.52	107.63	122.31	187.06	45.86	49.49	11.75

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
39	ok	0.23						
729	ok	0.28						
836	ok	0.46						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.46						

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
7	25.00	1	1	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	No	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 99 di 109					

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	No	N zo	Μz	Мо	M zo
3	ok	0.10	8.51e-02	3.50e-02	5.7	5.7	4.5	4.5	-55.2	-34.1	59.6	-63.7	-11.7	1.9
4	ok	0.10	0.2	3.08e-02	5.7	5.7	4.5	4.5	-46.4	-31.4	59.4	201.0	50.0	-42.0
5	ok	0.10	0.3	3.72e-02	5.7	5.7	4.5	4.5	-62.3	3.1	-6.2	226.2	57.1	77.1
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									-204.08	-156.40	-82.91	-136.58	-134.02	-136.02
		0.10	0.50	0.07	5.65	5.65	4.52	4.52	142.08	151.74	73.45	239.54	180.60	146.74

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
3	ok	0.23						
4	ok	0.22						
5	ok	0.36						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.83						

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
8	15.00	1	6	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	M z	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
37	ok	0.19	9.55e-02	7.53e-02	5.7	5.7	4.5	4.5	-87.7	-46.1	80.8	2.8	2.2	-1.3
728	ok	0.19	0.4	2.21e-03	5.7	5.7	4.5	4.5	21.5	106.8	37.2	-4.8	-34.5	-3.9
800	ok	0.19	0.2	2.69e-02	5.7	5.7	4.5	4.5	-32.7	7.6	50.6	21.4	61.6	4.24e-02
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									-564.48	-144.83	-190.14	-45.07	-37.01	-8.80
		0.19	0.70	0.25	5.65	5.65	4.52	4.52	91.92	106.79	174.21	53.62	61.59	12.22

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
37	ok	0.12						
728	ok	0.27						
800	ok	0.43						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.43						

Macro Setto	Spessore	Id Materiale	Id Criterio	Progettazione
	cm			
9	15.00	1	6	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
33	ok	0.19	6.38e-02	4.68e-02	5.7	5.7	4.5	4.5	-72.2	-19.6	43.0	-19.8	-26.9	4.5
726	ok	0.19	9.15e-02	8.42e-04	5.7	5.7	4.5	4.5	5.5	20.7	9.8	-1.2	41.5	5.1
740	ok	0.19	5.18e-02	4.98e-03	5.7	5.7	4.5	4.5	-5.2	-6.1	-5.0	-4.0	-44.4	-11.1
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νο	N zo	Μz	Мо	M zo
									-280.30	-77.54	-93.18	-54.87	-49.68	-12.80

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

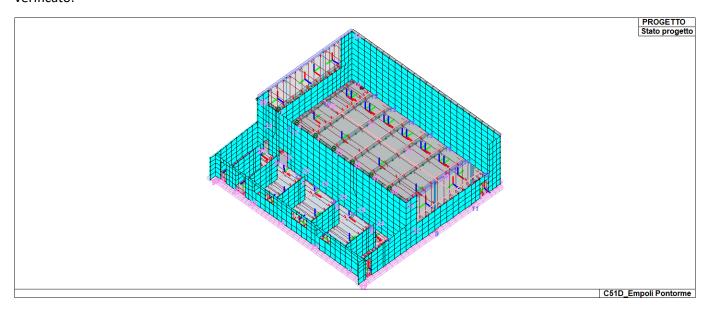
Docume	nto:
C51D_S	R1A
Rev.	Data
Α	Ottobre 2020
Pa	g. 100 di 109

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
		0.19	0.43	0.13	5.65	5.65	4.52	4.52	5.52	43.40	67.90	74.50	41.53	17.43

Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
33	ok	0.19						
726	ok	0.34						
740	ok	0.29						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.36						

Macro Setto	Spessore	ld Materiale	Id Criterio	Progettazione
	cm			
10	15.00	1	6	Singolo elemento

Nodo	Stato	x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νo	N zo	Μz	Мо	M zo
									daN/cm	daN/cm	daN/cm	daN	daN	daN
35	ok	0.19	8.66e-02	6.35e-02	5.7	5.7	4.5	4.5	-94.8	-27.1	60.3	16.5	-16.8	-4.2
727	ok	0.19	0.2	2.92e-03	5.7	5.7	4.5	4.5	8.9	49.1	17.0	-0.8	26.7	-8.6
767	ok	0.19	6.07e-02	1.28e-02	5.7	5.7	4.5	4.5	-10.3	-11.2	11.7	-15.4	23.0	-1.5
Nodo		x/d	V N/M	ver. rid	Af pr-	Af pr+	Af sec-	Af sec+	Νz	Νο	N zo	Μz	Мо	M zo
									-411.48	-108.94	-133.50	-15.38	-17.35	-17.11
		0.19	0.59	0.18	5.65	5.65	4.52	4.52	8.94	50.56	80.51	73.28	57.92	16.59


Nodo	Stato	Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		daN/cm2					daN/cm	daN/cm
35	ok	0.12						
727	ok	0.35						
767	ok	0.24						
Nodo		Max tau	Ver V pr	Ver V sec	Af V pr	Af V sec	V pr	V sec
		0.35						

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:			
C51D_SR1A			
Rev.	Data		
Α	Ottobre 2020		
Pa	g. 101 di 109		

Di seguito si riporta graficamente lo stato di progetto dei setti in c.a., il colore celeste indica che l'elemento è verificato.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Docume	Documento:		
C51D_SR1A			
Rev.	Data		
A	Ottobre 2020		
Pag. 102 di 109			
_			

STATI LIMITE D' ESERCIZIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

- Combinazioni rare
- Combinazioni frequenti
- Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

I valori di litto	eresse sono i seguenti.
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare
	[normalizzato a 1]
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato
_	a 1]
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi
	permanenti [normalizzato a 1]
wR	apertura caratteristica delle fessure in combinazioni rare [mm]
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]
dR	massima deformazione in combinazioni rare
dF	massima deformazione in combinazioni frequenti
dP	massima deformazione in combinazioni quasi permanenti

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:


pilastri	rRfck	rRfyk	rPfck	per sezioni significative
travi	rRfck	rRfyk	rPfck	per sezioni significative
	wR	wF	wP	per sezioni significative
	dR	dF	dΡ	massimi in campata
setti e gusci	rRfck	rRfyk	rPfck	massimi nei nodi dell'elemento
	wR	wF	wP	massimi nei nodi dell'elemento

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Setto	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb
					mm	mm	mm	
1	0.05	0.18	0.07	121,121,141	0.0	0.0	0.0	0,0,0
2	0.05	0.22	0.06	134,126,141	0.0	0.0	0.0	0,0,0
3	0.05	0.23	0.06	134,126,141	0.0	0.0	0.0	0,0,0
Setto	rRfck	rRfyk	rPfck		wR	wF	wP	
	0.39	0.62	0.45		0.20	0.18	0.17	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 103 di 109		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pa	g. 104 di 109	

VERIFICHE S.L. ELEMENTI IN LEGNO LEGENDA TABELLA VERIFICHE S.L. ELEMENTI IN LEGNO

Il programma consente la verifica dei seguenti tipi di elementi:

1. Aste 2. Travi 3. Pilastri

L'esito delle verifiche è espresso con un codice come di seguito indicato:

ok: verifica con esito positivoNV: verifica con esito negativo

Le verifiche sono condotte in ottemperanza alle NTC 17 Gennaio 2018, oppure seguendo le indicazioni analitiche riportate nella norma tecnica UNI EN 1995-1-1:2005 "Eurocodice 5 - Progettazione delle strutture di legno - Parte 1-1: Regole generali - Regole comuni e regole per gli edifici"; in particolare le verifiche effettuate sono riconducibili ai punti:

NTC 2018

- 4.4.8 Stati limite ultimi
- 4.4.8.1.7 Tensoflessione
- 4.4.8.1.8 Pressoflessione
- 4.4.8.1.11 Taglio e torsione
- 4.4.8.2.1 Elementi inflessi
- 4.4.8.2.2 Elementi compressi

EC5

- 2.2.2 Ultimate limit states
- 2.2.3 Serviceability limit states
- 2.4.1 Design value of material property
- 2.4.3 Design resistances
- 3.1.3 Strength modification (kmod)
- 3.1.4 Deformation modification (kdef)
- 6. Ultimate limit states
- 6.2 Design of cross-sections subjected to combined stresses
- 6.3 Stability of members

Simbologia adottata nelle tabelle di verifica

Le verifiche effettuate ai sensi delle NTC 2018 sono dettagliatamente riportate come da tabella seguente:

Elem. Numero dell'elemento Tipo Codice di individuazione del tipo di elemento: Trave (T), Pilastro (P), Asta (A) Stato Codice della verifica: ok verificato, NV non verificato Note Numero della sezione (s) e del materiale (m) dell'archivio Ver N+/M Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver N-/M Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento Rif. cmb Numero della combinazione in cui si è attinto il valore riportato per le verifiche	Le verifiche ener	tuate al serisi delle IVIC 2018 sorio dettagliatamente riportate come da tabella seguente.
Stato Codice della verifica: ok verificato, NV non verificato Note Numero della sezione (s) e del materiale (m) dell'archivio Ver N+/M Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver N-/M Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento	Elem.	Numero dell'elemento
Note Numero della sezione (s) e del materiale (m) dell'archivio Ver N+/M Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver N-/M Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento	Tipo	Codice di individuazione del tipo di elemento: Trave (T), Pilastro (P), Asta (A)
Ver N+/M Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver N-/M Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento	Stato	Codice della verifica: ok verificato, NV non verificato
Ver N-/M Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6 Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit, c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento	Note	Numero della sezione (s) e del materiale (m) dell'archivio
Ver V/T Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio Ver N(s) Verifica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione dell' elemento	Ver N+/M	Verifica come da formule 4.4.6a e 4.4.6b per tensoflessione, con i valori di km definiti nel par. 4.4.8.1.6
Ver N(s) Ver lica instabilità a compressione come da par. 4.4.8.2.2 Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Ver lica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Ver N-/M	Verifica come da formule 4.4.7a e 4.4.7b per pressoflessione, con i valori di km definiti nel par. 4.4.8.1.6
Kcy(z) Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Ver V/T	Verifica come da formula 4.4.10 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio
Ver M(s) Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Ver N(s)	Verifica instabilità a compressione come da par. 4.4.8.2.2
Kcrit (y)/(z) Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Kcy(z)	Fattore di instabilità Kcrit,c utilizzato nella formula 4.4.13, in funzione della snellezza relativa
w,net R Massima deformazione in combinazione rara (F frequente, P quasi permanente) w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Ver M(s)	Verifica instabilità laterale come da par. 4.4.8.2.1, effettuata in entrambi i piani principali y e z
w,net Ri Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito kdef Fattore di deformazione dell' elemento	Kcrit (y)/(z)	Fattore di instabilità laterale utilizzato nella formula 4.4.11 rispettivamente per la flessione y e z
kdef Fattore di deformazione dell' elemento	w,net R	Massima deformazione in combinazione rara (F frequente, P quasi permanente)
	w,net Ri	Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito
Rif. cmb Numero della combinazione in cui si è attinto il valore riportato per le verifiche	kdef	Fattore di deformazione dell' elemento
	Rif. cmb	Numero della combinazione in cui si è attinto il valore riportato per le verifiche

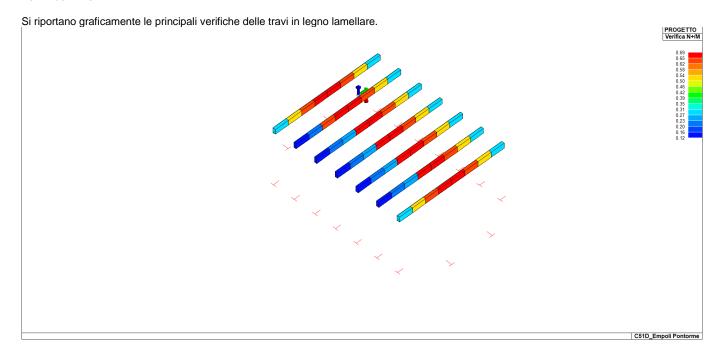
Le verifiche effettuate ai sensi dell'EC5 sono dettagliatamente riportate come da tabella seguente:

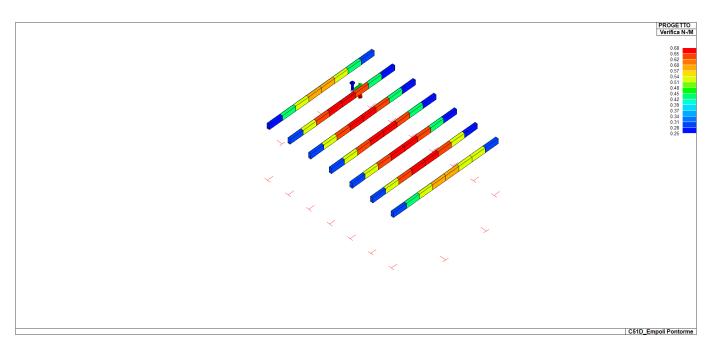
Le verniche ener	e verifiche effettuate al sensi dell'200 sono dettagliatamente riportate come da tabella seguente.			
Elem.	Numero dell'elemento			
Tipo	Codice di individuazione del tipo di elemento: Trave (T), Pilastro (P), Asta (A)			
Stato	Codice della verifica ok verificato, NV non verificato			
Note	Numero della sezione (s) e del materiale (m) dell'archivio			
Ver N+/M	Verifica come da formula 6.17 e 6.18 per tensoflessione			
Ver N-/M	Verifica come da formula 6.19 e 6.20 per pressoflessione			
Ver V/T	Verifica come da formula 6.13 e 6.14 (taglio torsione) con interazione ottenuta per quadratura del termine di taglio			
Ver N(s)	Verifica come da formula 6.23 e 6.24 per pressoflessione di elementi con snellezza relativa in un piano maggiore di 0.3			
Kcy (z)	Fattore di instabilità utilizzato nella formula 6.23 (6.24)			
Ver M(s)	Verifica come da formula 6.35 (effettuata in entrambi i piani principali) per instabilità laterale			
Kcrit (y) (z)	Fattore di instabilità laterale utilizzato nella formula 6.35 rispettivamente per la flessione y e z			

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

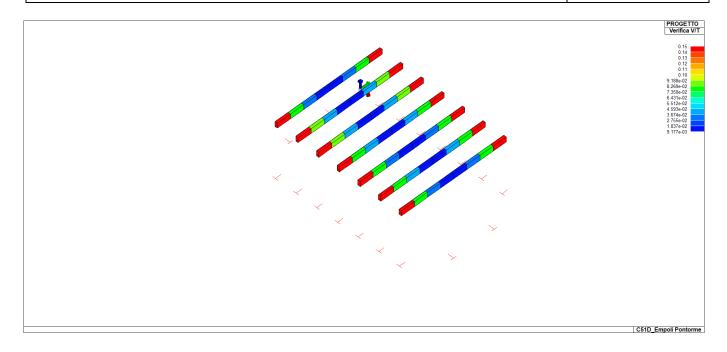
Documento:				
C51D_S	R1A			
Rev.	Data			
	0,, 1, 0,000			
Α	Ottobre 2020			
Pag. 105 di 109				

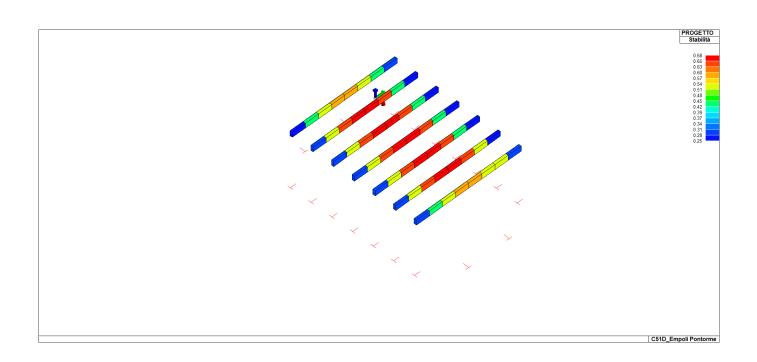

w,net R	Massima deformazione in combinazione rara (F frequente, P quasi permanente)	
w,net Ri	Massima deformazione in combinazione rara (F frequente, P quasi permanente) valutata a tempo infinito	
kdef	Fattore di deformazione dell' elemento	
Rif. cmb	Numero della combinazione in cui si è attinto il valore riportato per le verifiche	


Si sottolinea che le cinque verifiche sono espresse dal rapporto tra domanda e capacità, affinché la verifica sia positiva il rapporto deve essere inferiore o uguale a 1. La capacità è affetta dal termine **kmod**, espressione della classe di servizio e della durata dei carichi (si considera a livello di combinazione il caso di carico di minor durata).

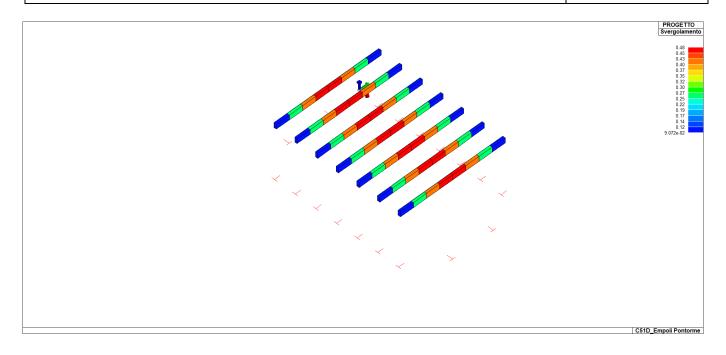
Le deformazioni dell' elemento espresse in rapporto ad un millesimo di lunghezza sono rappresentate dal valore istantaneo e dal valore a tempo infinito. Il valore della deformazione a tempo infinito per una combinazione di carichi è ottenuta sommando per ogni caso di carico sia il valore istantaneo che il valore ottenuto dall' aliquota quasi-permanente amplificata del fattore kdef (formula 2.2 e 2.3).

In termini analitici il contributo del caso di carico con coefficiente di combinazione *Psi* (diverso da 0) è:


Psi + kdef x Psi2



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 106 di 109		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

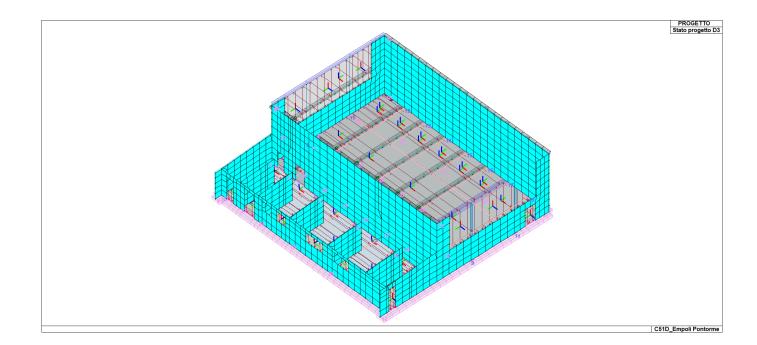
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 107 di 109		

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev. Data		
Α	Ottobre 2020	
Pag. 108 di 109		

Si riporta la procedura di predimensionamento delle travi di copertura con le verifiche di deformabilità.

		Analisi dei Ca	richi				
Pesi Permanenti Strutturali				1	1	γ G1=	13
Peso proprio trave						0,42	kN/m ²
G1						0,42	kN/m ²
							kN/m ²
G1 non compiutamenti definiti					C41	0,00	kN/m ²
Totale permanenti					G1k =	1,02	KIVIII
De al De anno anno ad NON atracticame l'							4.5
Pesi Permanenti NON strutturali						γG2=	
G2						0,80	kN/m ²
Totale permanenti					G2k =	0,80	kN/m ²
Tomio pormanona					OEN.	0,00	
Carico accidentale		tab 3.1.II				γQ1=	1,5
Cat.	Neve < 1000 m s.l.m.				Qk=	0,80	kN/m ²
		Combinazione de	Carichi				
Assunte le seguenti combinazioni dei		1:					
SLU - perm:	γG1·G1k+ γG2·G2k					(2.5.1)	
SLU - breve:	γg1·G1k+ γg2·G2k + γQ1·	Qk1					
SLE - perm:	$G_1 + G_2$					(2.5.3)	
SLE - var:	Qk1					(=:0:0)	
da cui si ricavano i carichi portati a met	ro:						
	γi∗G1k	γi∗G2k	$\gamma_i * Q_{k1}$				
SLU - perm:	1,33	1,20	0,00	8,17	kN/m		
SLU - breve:	1,33	1,20	1,20	12,05	kN/m		
SLE - perm:	1,02	0,80	0,00	5,89	kN/m		
SLE - var:	0,00	0,00	0,80	2,58	kN/m		
		Verifica SLI	J:				
F _{d,I}	12,05	kN/m		k _{mod}	0,80		
da cui discendono:							
	M _{d,1}	357,22	kNm				
	T _{d,I}	92,78	kN				
	-,-	,					
F _{d,II}	8,17	kN/m		k _{mod}	0,60		
· u,ii	M _{d,II}	242,31	kNm	Millou	0,00		
	T _{d,II}	62,94	kN				
	d,II	02,34	KIV				
Verifica a flessione							
$\sigma_{d,l}$ =	10,31	<	f _{m,d}	15,45	N/mm ²		
				11,59	N/mm ²		
σ _{d,II} =	6,99	<	f _{m,d}	11,59	IN/IIIIII		
Verifica a taglio			k _{ef}	0,67			
	0,76	<	f _{v,d}	1,93	N/mm ²		
τ _{d,l} =				-	N/mm²		
τ _{d,II} =	0,52	Varities CLI	f _{v,d}	1,45	IN/IIIIII		
CLE	F 00	Verifica SLE		NI /mm	1	1	
SLE - perm: SLE - var:	5,89 2,584	kN/m	5,89 2,58	N/mm N/mm			
JLL - val.	۷,364	kN/m		mm ⁴			
		A =		mm ²			
		L=		mm N/mm ²			
		E _{0,m}		-			
		G _m	650	N/mm ²			
Valutazione della freccia dovuta ai C	ariahi Barmananti						
valutazione della freccia dovuta ai C	arichi Permanenti		ν	0,60	(classo di son	izio 1)	
Valore della Freccia istantanea			K _{def}	27,17	(classe di serv	1210 1)	
Valore della Freccia Istantanea Valore della Freccia finale			W _{ist,G}	43,48	mm		
valore della i reccia IIIIale			W _{fin,G}	+3,40		+	
Valutazione della freccia dovuta ai C	arichi Variabili						
Tanamaione dena neccia dovula al C	unom vanasiii		Ψ21	0,00			
Valore della Freccia istantanea			W _{ist,Q}	11,92	mm		
Valore della Freccia finale			W _{fin,Q}	0,00	mm		
Talone della i reccia illiare			**tin,Q	3,00			
dovendo risultare:		VERIEICHE DA	FUROCODICE	5 F ADDEN	DICE NAZIONAL	F	
W _{ist}	39,10	<	L/300	51,33	mm	verificato	76,169
	43,48	<	L/300 L/250	61,60		verificato	70,589
W _{fin}	43,40		L/ 250 IE DA NORMA			vernicato	70,58
		VERIFICE	IL DA NURIVIA				
W _{ist} ,Q1	11,92	<	L/300	51,33	mm	verificato	23,229


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE CORPO B

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 109 di 109		

VERIFICHE DI RESISTENZA AL FUOCO

Si riportano in forma grafica le principali verifiche di resistenza al fuoco.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:			
C51D_SR1A			
Rev. Data			
Α	Ottobre 2020		
Pag. 1 di 74			

CORPO B: PENSILINA

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:			
C51D_SR1A			
Rev. Data			
A Ottobre 2020			
Pag. 2 di 74			

INDICE

RELAZIONE DI CALCOLO STRUTTURALE	4
Premessa	
Descrizione generale dell'opera	2
Quadro normativo di riferimento adottato	
Azioni di progetto sulla costruzione	
Modello numerico	
Informazioni sul codice di calcolo	
Modellazione delle azioni	
Combinazioni e/o percorsi di carico	
Verifiche agli stati limite ultimi	8
Verifiche agli stati limite di esercizio	8
RELAZIONE SUI MATERIALI	8
NORMATIVA DI RIFERIMENTO	
CARATTERISTICHE MATERIALI UTILIZZATI	12
LEGENDA TABELLA DATI MATERIALI	12
MODELLAZIONE DELLE SEZIONI	18
LEGENDA TABELLA DATI SEZIONI	18
MODELLAZIONE STRUTTURA: NODI	20
LEGENDA TABELLA DATI NODI	20
TABELLA DATI NODI	20
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	22
TABELLA DATI TRAVI	21
MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	23
LEGENDA TABELLA DATI SOLAI-PANNELLI	23
MODELLAZIONE DELLE AZIONI	27
LEGENDA TABELLA DATI AZIONI	27
SCHEMATIZZAZIONE DEI CASI DI CARICO	28
NEVE	32
DEFINIZIONE DELLE COMBINAZIONI	33
LEGENDA TABELLA COMBINAZIONI DI CARICO	33
AZIONE SISMICA	37

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 3 di 74		

VALUTAZIONE DELL' AZIONE SISMICA	37
Parametri della struttura	37
RISULTATI ANALISI SISMICHE	39
LEGENDA TABELLA ANALISI SISMICHE	39
RISULTATI NODALI	47
RISULTATI ELEMENTI TIPO TRAVE	51
LEGENDA RISULTATI ELEMENTI TIPO TRAVE	51
VERIFICHE PER ELEMENTI IN ACCIAIO	60
STATI LIMITE D' ESERCIZIO ACCIAIO	61
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO ACCIAIO	
VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.	62
LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A	62
PROGETTAZIONE DELLE FONDAZIONI	63
STATI LIMITE D' ESERCIZIO	69
LEGENDA TABELLA STATI LIMITE D' ESERCIZIO	69
Verifica secondo il D.M. 17/01/2018 dei nodi: 1, 11	71

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:			
C51D_SR1A			
Rev. Data			
Α	Ottobre 2020		
Pag. 4 di 74			

RELAZIONE DI CALCOLO STRUTTURALE

Premessa

La presente relazione di calcolo strutturale, in conformità al §10.1 del DM 17/01/18, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

Nella presente parte sono riportati i principali elementi di inquadramento del progetto esecutivo riguardante le strutture, in relazione agli strumenti urbanistici, al progetto architettonico, al progetto delle componenti tecnologiche in generale ed alle prestazioni attese dalla struttura.

Descrizione generale dell'opera

Trattasi di una pensilina con travi e pilastri in acciaio e travi di fondazione in c.a.

Descrizione generale dell'opera				
Fabbricato ad uso	Scolastico			
	Comune di EMPOLI (FI) (Regione TOSCANA)			
Ubicazione	Località EMPOLI (FI)			
	Longitudine 10.947, Latitudine 43.719			
Numero di piani	Fuori terra: 1			
Numero di piani	le dimensioni dell'opera in pianta sono racchiuse in un rettangolo di 4.40m x 10.10m			
Tipo di fondazione	Travi rovesce in c.a. gettato in opera			

Parametri della struttura			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]
IV	100.0	2.0	200.0

Fattore di struttura/comportamento

Il fattore di struttura è q=1 in quanto è stata eseguita una progettazione non dissipativa.

Quadro normativo di riferimento adottato

Le norme ed i documenti assunti quale riferimento per la progettazione strutturale vengono indicati di seguito.

Nel capitolo "normativa di riferimento" è comunque presente l'elenco completo delle normative disponibili.

Progetto-verifica degli elementi	
Progetto cemento armato	D.M. 17-01-2018
Progetto acciaio	D.M. 17-01-2018
Progetto legno	D.M. 17-01-2018
Progetto muratura	D.M. 17-01-2018
Azione sismica	
Norma applicata per l'azione sismica	D.M. 17-01-2018

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 5 di 74	

Azioni di progetto sulla costruzione

Nei capitoli "modellazione delle azioni" e "schematizzazione dei casi di carico" sono indicate le azioni sulla costruzioni.

Nel prosieguo si indicano tipo di analisi strutturale condotta (statico,dinamico, lineare o non lineare) e il metodo adottato per la risoluzione del problema strutturale nonché le metodologie seguite per la verifica o per il progetto-verifica delle sezioni. Si riportano le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti; le configurazioni studiate per la struttura in esame sono risultate effettivamente esaustive per la progettazione-verifica.

La verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

K * u = F dove K = matrice di rigidezza

u = vettore spostamenti nodali

F = vettore forze nodali

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

Elemento tipo **TRUSS** (biella-D2)
Elemento tipo **BEAM** (trave-D2)

Elemento tipo **MEMBRANE** (membrana-D3)

Elemento tipo **PLATE** (piastra-guscio-D3)
Elemento tipo **BOUNDARY** (molla)

Elemento tipo STIFFNESS (matrice di rigidezza)

Elemento tipo BRICK (elemento solido)

Elemento tipo **SOLAIO** (macro elemento composto da più membrane)

Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-18, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità

Tipo di analisi strutturale		
Carichi verticali	SI	
Sismica dinamica lineare	SI	
Non linearità geometriche (fattore P delta)	SI	

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Informazioni sul codice di calcolo		
Titolo:	PRO_SAP PROfessional Structural Analysis Program	
Versione:	PROFESSIONAL (build 2020-05-189)	
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara	
Dati utente finale:	Eutecne Srl	
Codice Licenza:	Licenza dsi5843	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 6 di 74	

Un attento esame preliminare della documentazione a corredo del software *ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico*. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: https://www.2si.it/it/prodotti/affidabilita/

Modellazione della geometria e proprietà meccaniche:		
nodi	65	
elementi D2 (per aste, travi, pilastri)	88	
elementi D3 (per pareti, platee, gusci)	0	
elementi solaio	9	
elementi solidi	0	
Dimensione del modello struttura	ale [cm]:	
X min =	0.00	
Xmax =	355.00	
Ymin =	-968.00	
Ymax =	40.00	
Zmin =	0.00	
Zmax =	344.00	
Strutture verticali:		
Elementi di tipo asta	NO	
Pilastri	SI	
Pareti	NO	
Setti (a comportamento membranale)	NO	
Strutture non verticali:		
Elementi di tipo asta	NO	
Travi	SI	
Gusci	NO	
Membrane	NO	
Orizzontamenti:		
Solai con la proprietà piano rigido	SI	
Solai senza la proprietà piano rigido	NO	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 7 di 74	

Tipo di vincoli:	
Nodi vincolati rigidamente	NO
Nodi vincolati elasticamente	NO
Nodi con isolatori sismici	NO
Fondazioni puntuali (plinti/plinti su palo)	NO
Fondazioni di tipo trave	SI
Fondazioni di tipo platea	NO
Fondazioni con elementi solidi	NO

Modellazione delle azioni

Si veda il capitolo **"Schematizzazione dei casi di carico"** per le informazioni necessarie alla comprensione ed alla ricostruzione delle azioni applicate al modello numerico, coerentemente con quanto indicato nella parte "2.6. Azioni di progetto sulla costruzione".

Combinazioni e/o percorsi di carico

Si veda il capitolo "Definizione delle combinazioni" in cui sono indicate le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti.

Combinazioni dei casi di carico		
APPROCCIO PROGETTUALE	Approccio 2	
Tensioni ammissibili	NO	
SLU	SI	
SLV (SLU con sisma)	SI	
SLC	NO	
SLD	SI	
SLO	NO	
SLU GEO A2 (per approccio 1)	NO	
SLU EQU	NO	
Combinazione caratteristica (rara)	SI	
Combinazione frequente	SI	
Combinazione quasi permanente (SLE)	SI	
SLA (accidentale quale incendio)	SI	

Principali risultati

I risultati devono costituire una sintesi completa ed efficace, presentata in modo da riassumere il comportamento della struttura, per ogni tipo di analisi svolta.

Nella presente relazione di calcolo sono riportati i seguenti risultati che il progettista ritiene di interesse per la descrizione e la compresione del/i modello/i e del comportamento della struttura:

per l'analisi modale:

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 8 di 74	

- periodi dei modi di vibrare della struttura
- masse eccitate dai singoli modi
- massa eccitata totale

deformate e sollecitazioni:

- spostamenti e rotazioni dei singoli nodi della struttura
- reazioni vincolari (nel caso siano presenti nodi vincolati rigidamente)
- pressioni sul terreno (nel caso siano presenti elementi di fondazione)
- sollecitazioni sugli elementi d2 nelle combinazioni di calcolo più significative
- tensioni sugli elementi d3 nelle combinazioni di calcolo più significative
- sollecitazioni sui macroelementi da elementi d3 nelle combinazioni di calcolo più significative

La presente relazione, oltre ad illustrare in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare, riporta una serie di immagini: per i dati in ingresso:

- modello solido della struttura
- numerazione di nodi e ed elementi
- configurazioni di carico statiche
- configurazioni di carico sismiche con baricentri delle masse e eccentricità

per le combinazioni più significative (statisticamente più gravose per la struttura):

- configurazioni deformate
- diagrammi e inviluppi delle azioni interne
- mappe delle tensioni
- reazioni vincolari
- mappe delle pressioni sul terreno

per il progetto-verifica degli elementi:

- diagrammi di armatura
- percentuali di sfruttamento
- mappe delle verifiche più significative per i vari stati limite

Informazioni generali sull'elaborazione e giudizio motivato di accettabilità dei risultati.

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. Si allega al termine della presente relazione elenco sintetico dei controlli svolti (verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.).

Verifiche agli stati limite ultimi

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLU vengono indicate, con riferimento alla normativa adottata, le modalità ed i criteri seguiti per valutare la sicurezza della struttura nei confronti delle possibili situazioni di crisi ed i risultati delle valutazioni svolte. In via generale, oltre alle verifiche di resistenza e di spostamento, devono essere prese in considerazione verifiche nei confronti dei fenomeni di instabilità, locale e globale, di fatica, di duttilità, di degrado.

Verifiche agli stati limite di esercizio

Nel capitolo relativo alla progettazione degli elementi strutturali agli SLE vengono indicate, con riferimento alla normativa adottata, le modalità seguite per valutare l'affidabilità della struttura nei confronti delle possibili situazioni di perdita di funzionalità (per eccessive deformazioni, fessurazioni, vibrazioni, etc.) ed i risultati delle valutazioni svolte.

RELAZIONE SUI MATERIALI

Il capitolo Materiali riportata informazioni esaustive relative all'elenco dei materiali impiegati e loro modalità di posa in opera e ai valori di calcolo.

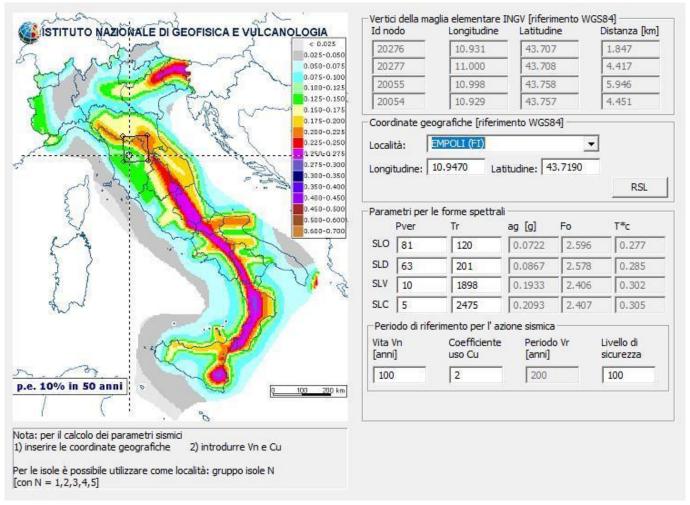
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 9 di 74	

NORMATIVA DI RIFERIMENTO

- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 4. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 6. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 7. Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- 8. Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 9. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 11. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 12. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 13. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 14. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 15. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 16. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 17. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 18. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 19. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 20. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 21. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 22. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.
- 23. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- edifici.

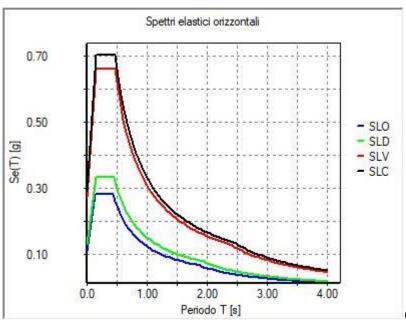

 24. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 25. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 26. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 27. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 28. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 29. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- 30. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.
- 31. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 32. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 33. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adeguamento degli edifici.
- 34. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

NOTA il capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.

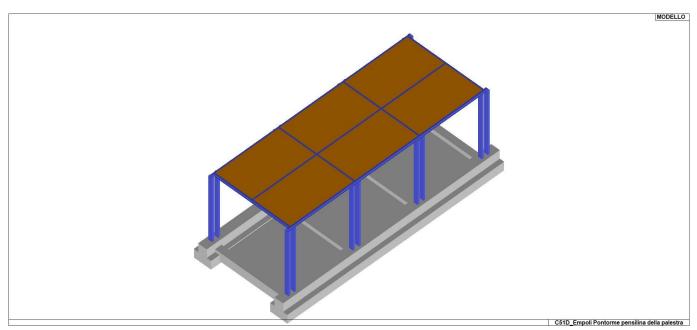
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_SR1A				
Rev. Data				
A Ottobre 2020				
Pag. 10 di 74				



01_INT_PERICOLOSITA


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 11 di 74					

01_INT_SPETTRI_ELASTICI_O

01_INT_VISTA_SOLIDA_001

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Docume	Documento:					
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 12 di 74						
	, ag a					

CARATTERISTICHE MATERIALI UTILIZZATI LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
4	materiale tipo legno

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

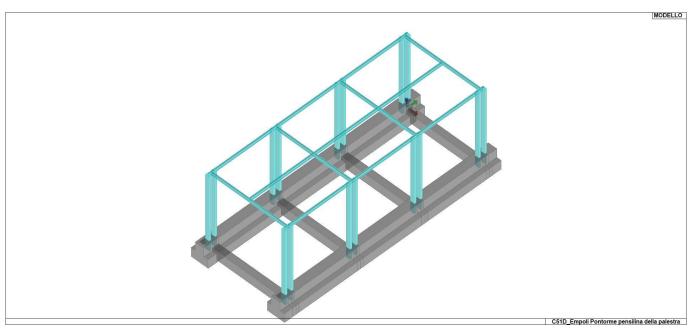
Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC m	Fattore di confidenza specifico per materiale; (è riportato solo
	se diverso da quello globale della struttura)
Fattore di confidenza FC a	Fattore di confidenza specifico per l'armatura (è riportato solo
	se diverso da quello globale della struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste non lineari
Massima compressione	Massima tensione di compressione per aste non lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
'	o.a.	Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress
			block
2	acciaio		
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile(>40)	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

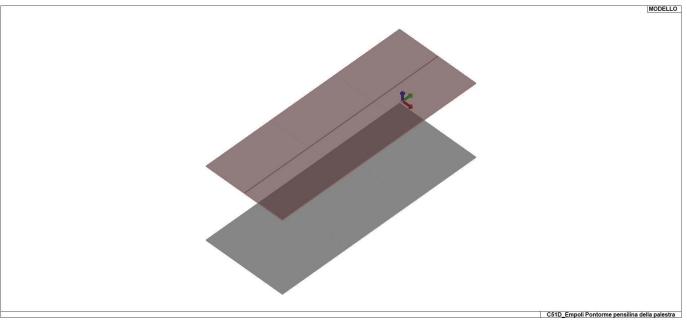

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Ī	Documento:					
	C51D_SR1A					
	Rev.	Data				
ľ	Α	Ottobre 2020				
ŀ	Pag. 13 di 74					

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
13	Acciaio Fe510 - S355-acciaio Fe510-S355			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	Tensione ft	5100.0							
	Resistenza fd	3550.0							
	Resistenza fd (>40)	3150.0							
	Tensione ammissibile	2400.0							
	Tensione ammissibile (>40)	2100.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05
144	Legno E = 1.260e+05 XLAM Pannelli orizzontali			1.109e+05	0.0	6500.0	5.00e-04	1.00e-05	
	ortotropi -legno E = 1.109e+05 (XLAM -1- oriz)								
	Modulo E0,05			1.109e+05					
	Lamellare : SI								
	Resistenza fc0	1.0							
	Resistenza ft0	1.0							
	Resistenza fm	1.0							
	Resistenza fv	1.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05



11_MOD_MATERIALI_D2

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_SR1A				
Rev.	Data			
A Ottobre 2020				
Pag. 14 di 74				

11_MOD_MATERIALI_SOLAI

Pilastri acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
Metodo di calcolo 2-2	Assegnato	Assegnato				
2-2 Beta assegnato	2.00	2.00				
2-2 Beta * L assegnato [cm]	0.0	0.0				
Metodo di calcolo 3-3	Assegnato	Assegnato				
3-3 Beta assegnato	2.00	2.00				
3-3 Beta * L assegnato [cm]	0.0	0.0				
1-1 Beta assegnato	1.00	1.00				
1-1 Beta * L assegnato [cm]	0.0	0.0				
Generalità						
Coefficiente gamma M0	1.05	1.05				
Coefficiente gamma M1	1.05	1.05				
Coefficiente gamma M2	1.25	1.25				
Effetti del 2 ordine	SI	SI				
Momenti equivalenti	SI	SI				
Usa condizioni I e II	SI	SI				

Travi acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
3-3 Beta * L automatico	NO	SI				
3-3 Beta assegnato	1.00	1.00				
3-3 Beta assegnato [cm]	0.0	0.0				
2-2 Beta * L automatico	NO	SI				
2-2 Beta assegnato	1.00	1.00				
2-2 Beta * L assegnato [cm]	0.0	0.0				
1-1 Beta * L automatico	NO	SI				
1-1 Beta assegnato	1.00	1.00				
1-1 Beta * L assegnato [cm]	0.0	0.0				
Generalità						
Coefficiente gamma M0	1.05	1.05				
Coefficiente gamma M1	1.05	1.05				
Coefficiente gamma M2	1.25	1.25				
Luce di taglio per GR [cm]	1.00	1.00				
Usa condizioni I e II	SI	SI				
Momenti equivalenti	SI	SI				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Docume	Documento:					
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 15 di 74						

Travi c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità	1/1/	2/0/	5/ 5/	7/10/	5/11/	0/ 12/
Progetta a filo	NO	NO				
Af inf: da q*L*L /	0.0	0.0				
Armatura	0.0	0.0				
Minima tesa	0.15	0.20				
Minima compressa	0.15	0.20				
Massima tesa	4.00	4.00				
Da sezione	SI	SI				
Usa armatura teorica	NO	NO				
Stati limite ultimi	110	110				
Tensione fy [daN/cm2]	4500.00	4500.00				
Tensione fy staffe [daN/cm2]	4500.00	4500.00				
Tipo acciaio	tipo C	tipo C				
Coefficiente gamma s	1.15	1.15				
Coefficiente gamma c	1.50	1.50				
Verifiche con N costante	SI	SI				
Fattore di ridistribuzione	0.0	0.0				
Modello per il confinamento	0.0	0.0				
Relazione tensio-deformativa	Mander	Mander				
Incrudimento acciaio		5.000e-03				
Fattore lambda	1.00	1.00				
epsilon max,s	4.000e-02	4.000e-02				
epsilon cu2	4.500e-03					
epsilon c2	0.0	0.0				
epsilon cy	0.0	0.0				
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	97.50	97.50				
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00				
Rapporto omogeneizzazione N	15.00	15.00				
Massimo rapporto area compressa/tesa	1.00	1.00				
Staffe						
Diametro staffe	0.0	0.0				
Passo minimo [cm]	4.00	4.00				
Passo massimo [cm]	30.00	30.00				
Passo raffittito [cm]	15.00	15.00				
Lunghezza zona raffittita [cm]	50.00	50.00				
Ctg(Teta) Max	2.50	2.50				
Percentuale sagomati	0.0	0.0				
Luce di taglio per GR [cm]	1.00	1.00				
Adotta scorrimento medio	NO	NO				
Torsione non essenziale inclusa	SI	SI				

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	NO	NO				
Af inf: da traliccio	SI	SI				
Consenti armatura a taglio	NO	NO				
Incrementa armatura longitudinale per taglio	SI	SI				
Af inf: da q*L*L /	20.00	20.00				
Incremento fascia piena [cm]	5.00	5.00				
Armatura						
Minima tesa	0.15	0.15				
Massima tesa	3.00	3.00				
Minima compressa	0.0	0.0				
Af/h [cm]	7.000e-02	7.000e-02				
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00	4500.00				
Tipo acciaio	tipo C	tipo C				
Coefficiente gamma s	1.15	1.15				
Coefficiente gamma c	1.50	1.50				
Fattore di ridistribuzione	0.0	0.0				
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00	85.00				
Tensione amm. acciaio [daN/cm2]	2600.00	2600.00				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev. Data					
Α	Ottobre 2020				
Pag. 16 di 74					

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Rapporto omogeneizzazione N	15.00	15.00				
Massimo rapporto area compressa/tesa	1.00	1.00				
Verifica freccia						
Infinita	250.00	250.00				
Istantanea	500.00	500.00				
Fattore viscosità	3.00	3.00				
Usa J non fessurato	SI	NO				
Elementi non strutturali						
Tamponatura antiespulsione	NO	NO				
Tamponatura con armatura	NO	NO				
Fattore di struttura/comportamento	2.00	2.00				
Coefficiente gamma m	0.0	0.0				
Periodo Ta	0.0	0.0				
Altezza pannello	0.0	0.0				

Legno	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
aste						
Beta assegnato	0.80	0.80				
travi						
3-3 Beta * L automatico	SI	SI				
3-3 Beta assegnato	1.00	1.00				
3-3 Beta * L assegnato [cm]	0.0	0.0				
2-2 Beta * L automatico	SI	SI				
2-2 Beta assegnato	1.00	1.00				
2-2 Beta * L assegnato [cm]	0.0	0.0				
1-1 Beta * L automatico	SI	SI				
1-1 Beta assegnato	1.00	1.00				
1-1 Beta * L assegnato [cm]	0.0	0.0				
pilastri	0.0	0.0				
Metodo di calcolo 3-3	Assegnato	Assegnato				
3-3 Beta assegnato	2.00	2.00				
3-3 Beta * L assegnato [cm]	0.0	0.0		1		
Metodo di calcolo 2-2	Assegnato	Assegnato		1		
2-2 Beta assegnato	2.00	2.00		+		
2-2 Beta * L assegnato [cm]	0.0	0.0		+		
1-1 Beta assegnato	1.00	1.00		+		
1-1 Beta * L assegnato [cm]	0.0	0.0		+		
Generalità	0.0	0.0		1		
Gamma non sismico	1.50	1.50		1	1	
Gamma sismico	1.50	1.50				
Classificazione	1.30	1.30				
Classe di servizio	2 (media umidità)	2 (media umidità)				
Per classe di servizio 1	2 (media dimidita)	2 (media dimula)				
	0.60	0.60				
Kmod permanente	0.60	0.60				
Kmod lunga Kmod media	0.70	0.70				
	0.80	0.80				
Kmod breve	0.90	0.90				
Kmod istantanea	1.10	1.10				
Kdef	0.60	0.60		1	-	
Per classe di servizio 2	0.00	0.00		1		
Kmod permanente	0.60	0.60		1		
Kmod lunga	0.70	0.70		1		
Kmod media	0.80	0.80		1		
Kmod breve	0.90	0.90		1		
Kmod istantanea	1.10	1.10				
Kdef	0.80	0.80				
Per classe di servizio 3						
Kmod permanente	0.50	0.50				
Kmod lunga	0.55	0.55		1		
Kmod media	0.65	0.65				
Kmod breve	0.70	0.70				
Kmod istantanea	0.90	0.90				
Kdef	2.00	2.00				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev. Data					
Α	Ottobre 2020				
Pag. 17 di 74					

XLAM	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
L direzione 1 [*] [cm]	1.00	1.00				
L direzione 2 [cm]	0.0	0.0				
Verifica V da D.38	NO	NO				
Verifica M da M.5-45	NO	NO				
Media valori elementi	SI	SI				
Connessioni pareti						
rvpk [daN/cm]	50.00	50.00				
rvtk [daN/cm]	50.00	50.00				
rvlk [daN/cm]	50.00	50.00				
RHk [daN]	5000.00	5000.00				
dH [cm]	25.00	25.00				
fcH90k [daN/cm2]	20.00	20.00				
Pannelli solaio						
f ist <l <="" td=""><td>500.00</td><td>500.00</td><td></td><td></td><td></td><td></td></l>	500.00	500.00				
f inf <l <="" td=""><td>350.00</td><td>350.00</td><td></td><td></td><td></td><td></td></l>	350.00	350.00				
Verifica vibrazioni (EC5 7.3)	NO	NO				
E massetto collaborante [daN/cm2]	200000.00	200000.00				
t massetto collaborante [cm]	4.00	4.00				
Smorzamento percentuale	0.0	0.0				
Resistenza al fuoco						
Spessore carbonizzazione [cm]	0.0	0.0				
3- intradosso	NO	NO				
3+ estradosso	NO	NO				

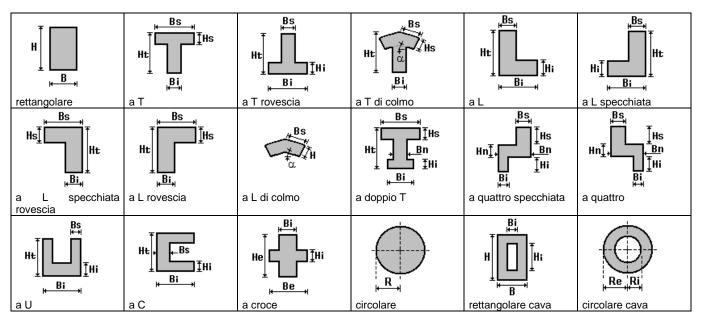
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 18 di 74					

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI


Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

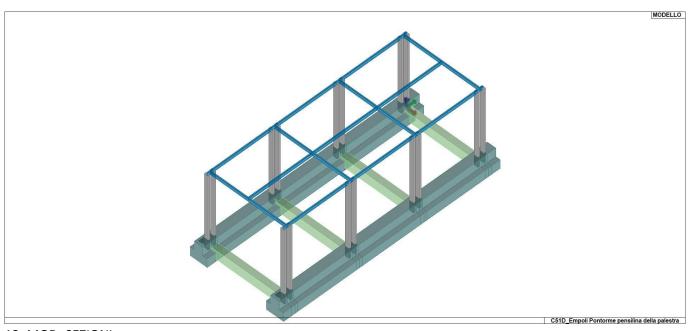
- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione				
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)				
A V3	A V3 area della sezione/fattore di taglio (per il taglio in direzione 3)				
Jt	fattore torsionale di rigidezza				
J2-2	J2-2 momento d'inerzia della sezione riferito all'asse 2				
J3-3	momento d'inerzia della sezione riferito all'asse 3				
W2-2	modulo di resistenza della sezione riferito all'asse 2				
W3-3	modulo di resistenza della sezione riferito all'asse 3				
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2				
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3				

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 19 di 74						

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	pilastrino-Rettangolare cava: b=8 h=18 bi=7.2 hi=17.2	20.16	0.0	0.0	567.99	233.01	834.93	58.25	92.77	65.09	115.49
2	IPE 120	13.20	0.0	0.0	1.70	28.00	318.00	8.60	53.00	13.60	60.70
3	trave di fondazione-T rovescia: bi=80 ht=80 bs=40 hi=40	4800.00	0.0	0.0	2.338e+06	1.920e+06	2.347e+06	4.800e+04	5.029e+04	8.000e+04	8.800e+04
4	trave-Rettangolare: b=30 h=40	1200.00	1000.00	1000.00	1.946e+05	9.000e+04	1.600e+05	6000.00	8000.00	9000.00	1.200e+04
5	travetto solaio-T ribassata: bi=10 ht=20 bs=40 hs=4	320.00	0.0	0.0	5366.24	2.267e+04	1.163e+04	1133.33	894.36	2000.00	1600.00

13_MOD_SEZIONI

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

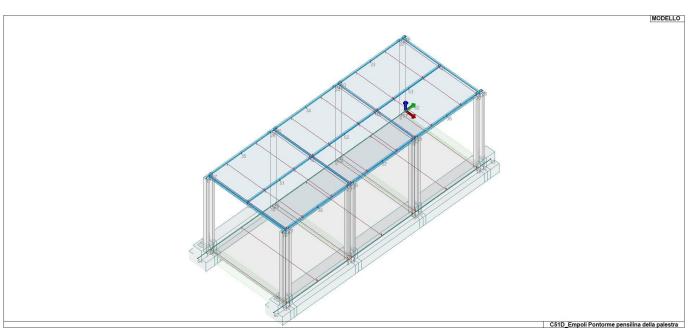
1		
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 20 di 74		

MODELLAZIONE STRUTTURA: NODI LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:


Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

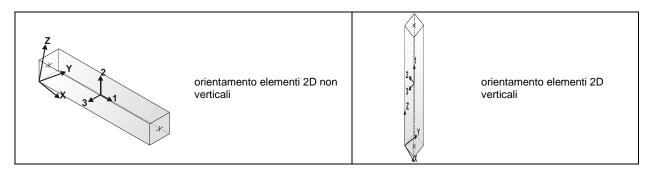
Nodo	numero del nodo.	
Х	valore della coordinata X	
Υ	valore della coordinata Y	
Z	valore della coordinata Z	
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).	
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo	
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).	

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

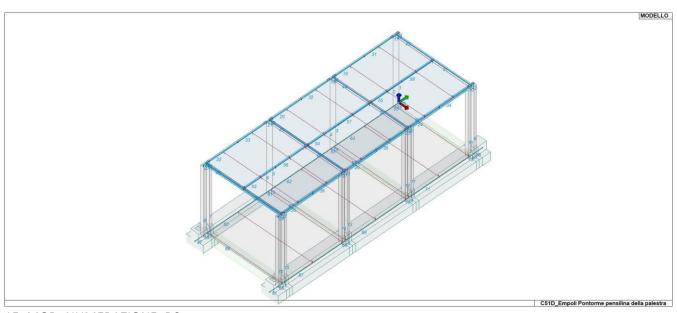
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

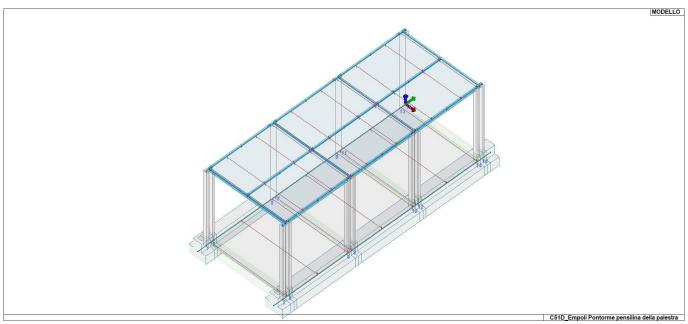

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 21 di 74	

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE TABELLA DATI TRAVI

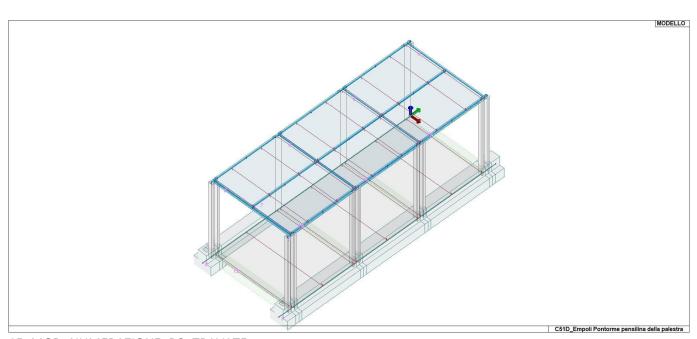
Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.


Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.


In particolare per ogni elemento viene indicato in tabella:

difficulate per ogni elemento viene indicato in tabella.		
Elem.	numero dell'elemento	
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa, asta compressa,	
Nodo I (J)	numero del nodo iniziale (finale)	
Mat.	codice del materiale assegnato all'elemento	
Sez.	codice della sezione assegnata all'elemento	
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui l'orientamento di default non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e l'asse 3 diretto secondo Y negativo	
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione interna non è attiva)	
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico	
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo elastico orizzontale	
Svincolo I (J) Wink V	non sia adottabile; l'orientamento di default prevede per gli elementi non verticali l'asse 2 conte nel piano verticale e l'asse 3 orizzontale, per gli elementi verticali l'asse 2 diretto secondo X neg e l'asse 3 diretto secondo Y negativo codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo iniziale, i restanti s nodo finale (il valore 1 indica che la relativa azione interna non è attiva) costante di sottofondo (coefficiente di Winkler) per la modellazione della trave su suolo elastico	



REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 22 di 74	

15_MOD_NUMERAZIONE_D2_PILASTRATE

15_MOD_NUMERAZIONE_D2_TRAVATE

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 23 di 74	

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello.

Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

ld.Arch.	Identificativo dell' archivio	
Tipo	Tipo di carico	
Variab. Carico variabile generico		
	Var. rid. Carico variabile generico con riduzione in funzione dell' area (c.5.5)	
	Neve Carico di neve	
G1k	carico permanente (comprensivo del peso proprio)	
G2k	carico permanente non strutturale e non compiutamente definito	
Qk	carico variabile	
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."	
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento")	
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro	
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore frequente	
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi permanente	
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione variabile: per la definizion	
	delle masse sismiche	
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici	

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'elemento	
Tipo	codice di comportamento	
-	S elemento utilizzato solo per scarico	l
	c elemento utilizzato per scarico e per modellazione piano rigido	l
	P elemento utilizzato come pannello	
	M scarico monodirezionale	l
	B scarico bidirezionale	l
ld.Arch.	Identificativo dell' archivio	
Mat	codice del materiale assegnato all'elemento	
Spessore	spessore dell'elemento (costante)	
Orditura	angolo (rispetto all'asse X) della direzione dei travetti principali	
Gk	carico permanente solaio (comprensivo del peso proprio)	
Qk	carico variabile solaio	
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)	

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particolare i simboli utilizzati in tabella assumono il sequente significato:

n particolare i simboli utilizzati in tabella assumono il seguente significato:		
Elem.	numero identificativo dell'elemento	
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali	
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);	
Pos.	Ascissa del punto di verifica	
F ist, F infi	Frecce instantanee e a tempo infinito	
Momento	Momento flettente	
Taglio	Sollecitazione di taglio	
Af inf.	Af inf. Area di armatura longitudinale posta all'intradosso della trave	
Af sup.	Af sup. Area di armatura longitudinale posta all'estradosso della trave	
AfV	Area dell'armatura atta ad assorbire le azioni di taglio	
7	, the a definition of the description of the descri	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 24 di 74	

Beff	Base della sezione di cls per l'assorbimento del taglio	
	simboli utilizzati con il metodo delle tensioni ammissibili:	
sc max	Massima tensione di compressione del calcestruzzo	
sf max	Massima tensione nell'acciaio	
tau max	Massima tensione tangenziale nel cls	
	simboli utilizzati con il metodo degli stati limite:	
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione	
	(per sola flessione)	
verif.	rapporto Sd/Su con sollecitazioni ultime proporzionali:	
	valore minore o uguale a 1 per verifica positiva	
Verif.V	rapporto Sd/Su con sollecitazioni taglianti proporzionali	
	valore minore o uguale a 1 per verifica positiva	
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare [normalizzato a 1]	
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni frequenti [normalizzato a 1]	
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi permanenti [normalizzato a 1]	
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti [normalizzato a 1]	
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato a 1]	
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi permanenti	
-	[normalizzato a 1]	
wR	apertura caratteristica delle fessure in combinazioni rare [mm]	
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]	
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]	

wP							ombinazion			[mm]				
ID Arch.	Tipo		G1k	G2k		Qk F	att. A	s sis.	Psi ()	Psi 1	Psi 2	Psi S 2	Fatt. Fi
	•		N/cm2	daN/cm2	daN/d									
1	Variab.		55e-02	1.30e-02				1.00	0.70		0.70	0.60	0.60	1.00
2	Neve	6.	00e-03	2.00e-03	8.00€	e-03		1.00	0.50)	0.20	0.0	0.0	1.00
Elem.	Tipo ID /	Arch.	Mat.	Spessore	Orditura	ı G1k	G2k	. QI	k Nodo	1/6 No	odo 2/7 N	lodo 3/8	Nodo	Nodo
	•					daN/cm2	daN/cm2							
1	CM	1	m=1	4.0	0.0	3.55e-02	1.30e-02	4.00e-0	2	58	5	4	59	55
	014			4.0	0.0	0.55.00	4.00.00	4.00	_	10	11	54		
2	CM	1	m=1	4.0	0.0	3.55e-02	1.30e-02	4.00e-0	2	59	2	16	60	56
2	CNA		1	4.0	0.0	2 55- 00	4 20- 00	4.000	,	8	9	55	04	- 7
3	CM	1	m=1	4.0	0.0	3.55e-02	1.30e-02	4.00e-0	2	60 6	15 7	14 56	61	57
4	CM	2	m=144	4.0	0.0	6.00e-03	2.00e-03	8.00e-0	3	50	51	47	41	26
7	Olvi	_	111-177	4.0	0.0	0.000 03	2.000 00	0.000	,	35	27	45	71	20
5	CM	2	m=144	4.0	0.0	6.00e-03	2.00e-03	8.00e-0	3	47	52	48	40	24
•										34	25	41		
6	CM	2	m=144	4.0	0.0	6.00e-03	2.00e-03	8.00e-0	3	48	53	49	39	22
										33	23	40		
7	CM	2	m=144	4.0	0.0	6.00e-03	2.00e-03	8.00e-0	3	46	21	38	20	43
_		_							_	47	51	50		
8	CM	2	m=144	4.0	0.0	6.00e-03	2.00e-03	8.00e-0	3	43	18	37	32	42
9	СМ	2	m=144	4.0	0.0	6.00e-03	2 000 02	8.00e-0	9	48 42	52 31	47 36	30	44
9	CIVI	2	111=144	4.0	0.0	0.006-03	2.000-03	0.006-0	5	42 49	53	48	30	44
										43	55	40		
Elem.	Stato	Note	fist	f infi	Pos.	Momento		•	V N/M	x/		glio Af \		B eff
4	ok L s=5,	1	cm -0.20	cm -0.49	cm 0.0	daN cn 0.0		cm2 0.0	0.0	0.0		daN cm2 2.12 0.0		cm 40.0
1	OK L S=5	,111=1	-0.20	-0.49				0.0	0.70	0.0		2.12 0.0 1.08 0.0		10.0
						7.918e+04		0.0	0.70	0.0		0.0		10.0
						3.166e+04		0.0	0.70	0.0		1.08 0.0		10.0
					355.0	0.0		0.0	0.0	0.0		2.12 0.0		40.0
2	ok L s=5,	,m=1	-0.20	-0.49	0.0	0.0		0.0	0.0	0.0		2.12 0.0		40.0
	•				40.0	3.166e+04	0.63	0.0	0.70	0.0	3 -69 ²	1.08 0.0	0.75	10.0
					177.5	7.918e+04	1.14	0.0	0.98	0.0		0.0		10.0
								0.0	0.70	0.0		1.08 0.0		10.0
_					355.0	0.0		0.0	0.0	0.0		2.12 0.0		40.0
3	ok L s=5,	,m=1	-0.20	-0.49	0.0	0.0	0.48	0.0	0.0	0.0	2 -892	2.12 0.0	0.24	40.0

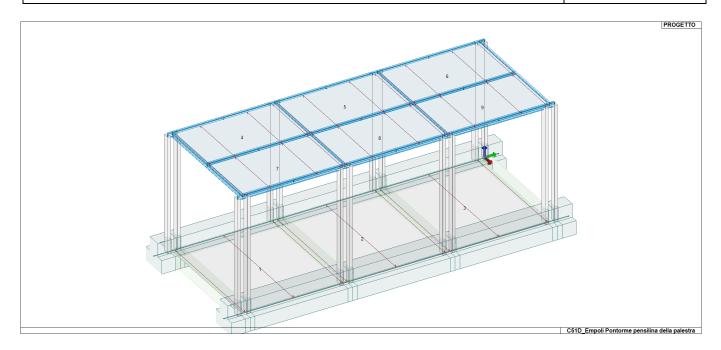
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

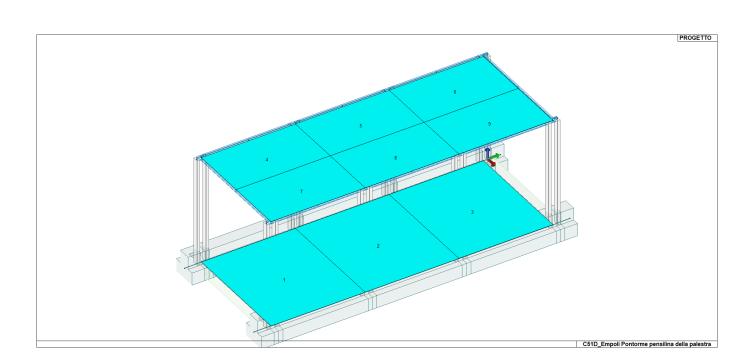
RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:

C51D_SR1A

Rev. Data


A Ottobre 2020


Pag. 25 di 74

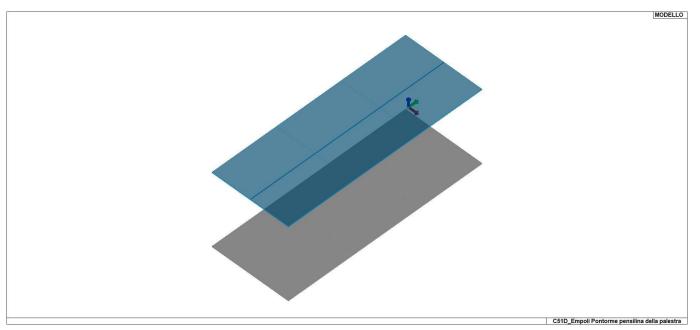
					3.166e+04	0.63	0.0				-691.08	0.0	0.75	10.0
					7.918e+04	1.14	0.0			0.05	0.0	0.0	0.0	10.0
					3.166e+04	0.63	0.0			0.03	691.08	0.0	0.75	10.0
				355.0	0.0	0.48	0.0	C	0.0	0.02	892.12	0.0	0.24	40.0
Elem.		f ist	f infi		Momento 0.0	Af inf. A	f. sup	V N	/M	x/d	Taglio -892.12	Af V	verif. V	
		-0.20	-0.49		7.918e+04	1.14	0.0	0.9	98 (0.05	892.12	0.0	0.75	
Elem.	Pos.	rRfck	rF	fck	rPfck	rRfyk		rFfyk	r	Pfyk	wR		wF	wP
	cm					-		-		-	mm		mm	mm
1	0.0	0.0		0.0	0.0	0.0)	0.0		0.0	0.0		0.0	0.0
	40.0	0.19	C).17	0.21	0.70)	0.60		0.57	0.07		0.0	0.0
	177.5	0.38	C	.32	0.41	0.98	}	0.84		0.80	0.09		0.08	0.08
	315.0	0.19).17	0.21	0.70		0.60		0.57	0.07		0.0	0.0
	355.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0
2		0.0		0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0
_	40.0	0.19).17	0.21	0.70		0.60		0.57	0.07		0.0	0.0
	177.5	0.38).32	0.41	0.98		0.84		0.80	0.09		0.08	0.08
	315.0	0.19).17	0.21	0.70		0.60		0.57	0.07		0.0	0.0
	355.0	0.0		0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0
2														
3		0.0		0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0
	40.0	0.19).17	0.21	0.70		0.60		0.57	0.07		0.0	0.0
	177.5	0.38		0.32	0.41	0.98		0.84		0.80	0.09		0.08	0.08
	315.0	0.19).17	0.21	0.70		0.60		0.57	0.07		0.0	0.0
	355.0	0.0		0.0	0.0	0.0)	0.0		0.0	0.0		0.0	0.0
Elem.		rRfck	rF	fck	rPfck	rRfyk	(rFfyk	r	Pfyk	wR		wF	wP
		0.38	C).32	0.41	0.98	3	0.84		0.80	0.09		0.08	0.08
Elem.	Stato Note	f ist	f infi	Fac. E	B-A Pos	s. Moment	to T	Taglio	V. 127	V. 128	V. 545	V. 129	V. 130	V. 131
		cm			cr			aN/cm						
4	ok Lm=144,p=1	-0.11	-0.10	0	.89 0.	0 0	.0	-2.02	0.0	0.0		5.13e-04	1 0.11	0.11
					88.	8 89.7	79	0.0	0.15	0.13	0.0	0.0	0.07	0.01
					177.	5 0	.0	2.02	0.0	0.0	0.06	6.13e-04	1 0.11	0.11
5	ok Lm=144,p=1	-0.11	-0.10	0	.89 0.	0 0	.0	-2.02	0.0	0.0	0.06	6.13e-04	1 0.11	0.11
	•				88.	8 89.7	79	0.0	0.15	0.13	0.0	0.0	0.07	0.01
					177.		.0	2.02	0.0	0.0		6.13e-04		0.11
6	ok Lm=144,p=1	-0.11	-0.10	0	.89 0.		.0	-2.02	0.0	0.0		6.13e-04		0.11
_	• • • • • • • • • • • • • • • • • • • •	•			88.			0.0	0.15	0.13	0.0	0.0		0.01
					177.		.0	2.02	0.0	0.0		6.13e-04		0.11
7	ok Lm=144,p=1	-0.11	-0.10	0	.89 0.		.0	-2.02	0.0	0.0		6.13e-04		0.11
•	OK 2111-111,p-1	0.11	0.10	Ū	.00 0. 88.			0.0	0.15	0.13	0.0	0.0		0.01
					177.		.0	2.02	0.0	0.0		6.13e-04		0.11
0	ok l m-144 n-1	0.11	0.10	0								5.13e-04		
8	ok Lm=144,p=1	-0.11	-0.10	U	.89 0.		.0	-2.02	0.0	0.0				0.11
					88.			0.0	0.15	0.13	0.0	0.0		0.01
_	-l. l 444		0.40	_	177.		.0	2.02	0.0	0.0		6.13e-04		0.11
9	ok Lm=144,p=1	-0.11	-0.10	0	.89 0.		.0	-2.02	0.0	0.0		3.13e-04		0.11
					88.			0.0	0.15	0.13	0.0	0.0		0.01
					177.	5 0	.0	2.02	0.0	0.0	0.06	6.13e-04	1 0.11	0.11
Elem.		f ist	f infi			Moment	to T	Taglio	V. 127	V. 128	V. 545	V. 129	V. 130	V. 131
							.0	-2.02						
		-0.11	-0.10			89.7	79	2.02	0.15	0.13	0.06	6.13e-04	1 0.11	0.11

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 26 di 74					

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA


Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 27 di 74					

MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico e la larghezza d'influenza
	per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione centrale del primo, dimensioni
	dell' impronta, interasse tra i carichi

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Р	ag. 28 di 74				

SCHEMATIZZAZIONE DEI CASI DI CARICO

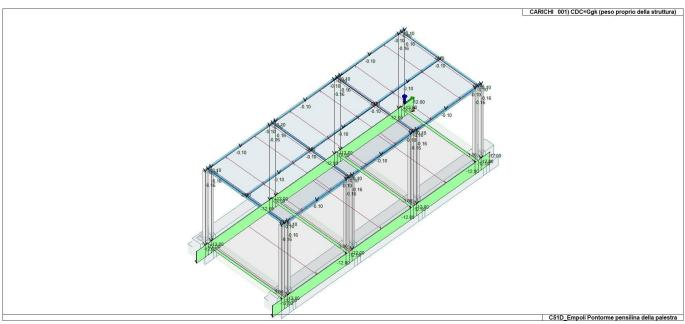
Viene di seguito riportata l'analisi dei carichi utilizzata nella progettazione, evidenziando i carichi permanenti strutturali (G1, con coefficiente di sicurezza 1.3), carichi permanenti non strutturali (G2, con coefficiente di sicurezza 1.5) e carichi accidentali (Q, con coefficiente di sicurezza 1.5).

In particolare si distinguono:

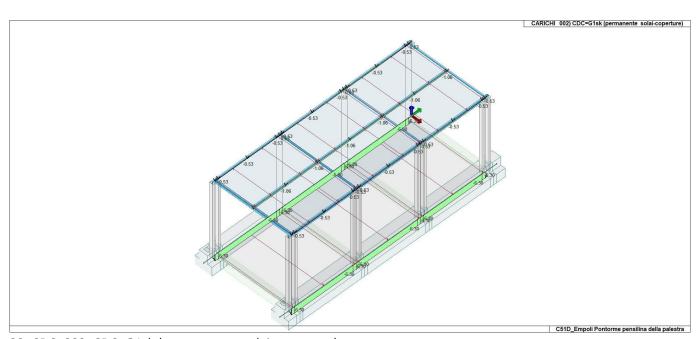
- Solaio piano terra: solaio in latero cemento tipo bisap o equivalente
- Solaio di copertura: x-lam spessore 12 cm
- Azioni di neve e vento

	C	51D_Empoli_F	Pontorme_Analisi dei c	arichi				
		Solaio piano	terra della pensilina	S0c				
0.11.								
Carichi permanenti Strutturali				L	b	h	P.U.	Peso
Colois bissos in laterassos ante 40 · 4				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio bisap in laterocemento 16+4						0,2		240,00
				Totale				240,00
Carichi permanenti non strutturali ma compiutamente definiti				L	b	h	P.U.	Peso
Massetto alleggerito			valore medio			0,14	800	112
Arrotondamento								3
				Totale				115,00
Carichi permanenti non strutturali			riferimento	L	b	h	P.U.	Peso
Cancili permanenti non strutturali			riieriinento	-	[m]	[m]	[kg/m3]	[daN/m2]
Massetto autolivellante (Fassa SA 500)			s cheda tecnica		ĮIIIJ	0,05	2100,00	105,00
Pavimentazione in gress			valore medio			0,03	2100,00	23,00
r avintentiazione in gress			valore medio			0,01		23,00
Arrotondamento								2,00
				Totale				130,00
Carichi Accidentali				L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Categoria C aree comuni				()	(***)	,,	[g]	400,00
Carichi permanenti Strutturali e perm. compiutamente definiti G	1			355,00	[daN/m2]		γG1 =	1,3
Carichi permanenti non strutturali G2				130,00	[daN/m2]		γG2 =	1,5
Totale Carichi Permanenti G1 + G2				485,00	[daN/m2]			
Carichi Accidentali Qk				400,00	[daN/m2]		γQ =	1,5
				100,00	[66,4/112]		1,4-	1,0
G1 =	255	[daN/m2]						
G2 =			Cata	egoria azione variabil	۵	Ψ0	Ψ1	Ψ2
G2 = Qk =	130	[daN/m2]	Cale	C4	5	0,7	0,7	Ψ2 0,6

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

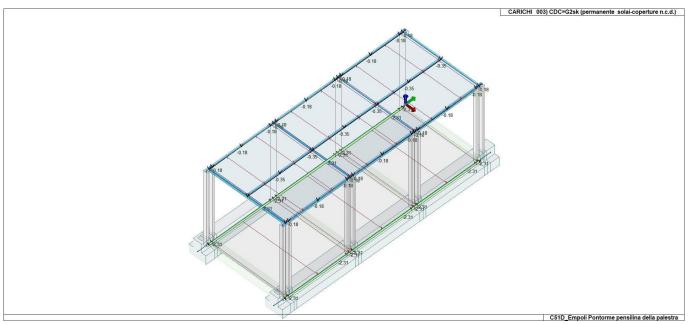

Documento:					
0540.0	544				
C51D_SR1A					
Rev.	Data				
A Ottobre 2020					
Pag. 29 di 74					

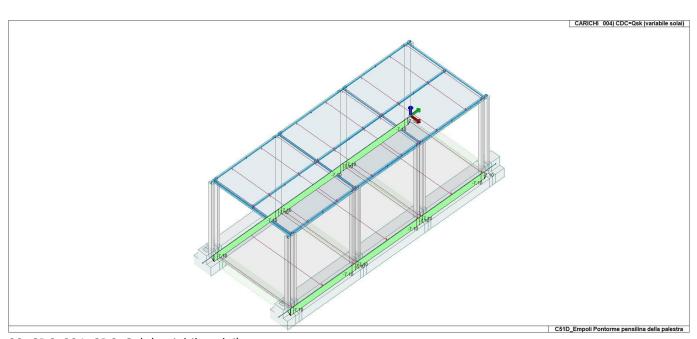
	C:	51D_Empoli_Pont	torme_Analisi dei carichi				
		Solaio Copertu	ra della pensilina S3				
Carichi permanenti Strutturali			L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Legno pannelli XLAM			1	1	0,06	500	30,00
Legno pannelli XLAM			1	1	0,06	500	30,00
			Totale				60,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
				[m]	[m]	[kg/m3]	[daN/m2]
Pannello Eps			1	1	0,06	25,00	1,50
Manto di copertura in Riverclack							6,00
Impiantistica interna							10,00
Arrotondamento							2,50
			Totale				20,00
Carichi Accidentali			L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Carico Neve							80,00
Carichi permanenti Strutturali G1			00.00	11 N/ 01			
Carichi permanenti Strutturali G1 Carichi permanenti non strutturali G2			60,00	[daN/m2]		γG1 =	1,3
Totale Carichi Permanenti G1 + G2			20,00	[daN/m2]		γG2 =	1,5
Totale Califul Fernialienu G1 + G2			80,00	[daN/m2]			
Carichi Accidentali Qneve			80,00	[daN/m2]		γQ =	1,5
G1 =	60	[daN/m2]					
G2 =		[daN/m2]	Categoria azione va	riabile	Ψ0	Ψ1	Ψ2
Qneve =		[daN/m2]	Neve		0.5	0,2	0


CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2		CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Qsk	CDC=Qsk (variabile solai)	
5	Qnk	CDC=Qnk (carico da neve)	
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=Qsk (variabile solai)
			partecipazione:1.00 per 5 CDC=Qnk (carico da neve)
7	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
13	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

_	Documento:						
	Documen	no.					
	C51D_S	C51D_SR1A					
	Rev Data						
	ACV.	Data					
	A Ottobre 2020						
	21 0110010 2020						
	Pag. 30 di 74						

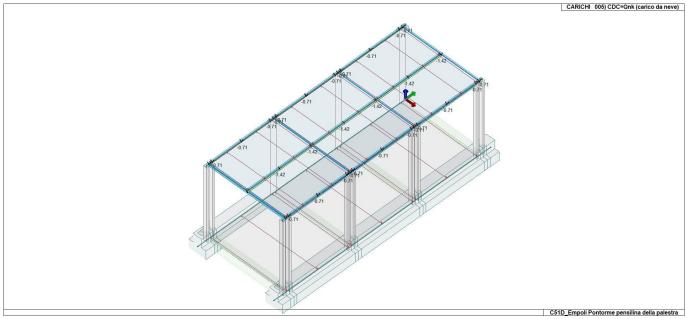

22_CDC_001_CDC=Ggk (peso proprio della struttura)


22_CDC_002_CDC=G1sk (permanente solai-coperture)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

_							
	Documento:						
	C51D_SR1A						
	Rev.	Data					
	A Ottobre 2020						
	Pag. 31 di 74						

22_CDC_003_CDC=G2sk (permanente solai-coperture n.c.d.)



22_CDC_004_CDC=Qsk (variabile solai)

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 32 di 74					

22_CDC_005_CDC=Qnk (carico da neve)

NEVE

Zona Neve = II

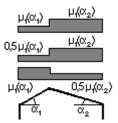
Periodo di ritorno, Tr = 50 anni

Ctr = 1 per Tr = 50 anni

Ce (coeff. di esposizione al vento) = 1,00

Valore caratteristico del carico al suolo = qsk Ce Ctr = 100 daN/mq

Copertura a due falde:


Angolo di inclinazione della falda $\alpha 1 = 1,1^{\circ}$

$$\mu$$
1(α 1) = 0,80 => Q1 = 80 daN/mq

Angolo di inclinazione della falda α 2 = 1,1°

$$\mu 1(\alpha 2) = 0.80 \implies Q2 = 80 \text{ daN/mq}$$

Schema di carico:

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 33 di 74					

DEFINIZIONE DELLE COMBINAZIONI LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

 $\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$

Combinazione caratteristica (rara) SLE

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$

Combinazione frequente SLE

 $G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$

Combinazione quasi permanente SLE

 $G1 + G2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

 $G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ΨΟ	Ψ1	Ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

NTC	2018 Tabella	2.6.1			
		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti non strutturali	Favorevoli	γG2	0,8	0,8	0,8
(Non compiutamente definiti)	Sfavorevoli	•	1,5	1,5	1,3
Carichi variabili	Favorevoli	γQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

In totale si hanno 94 combinazioni così suddivise:

- 14 combinazioni SLU
- 32 combinazioni SLU (SLV sisma)
- 32 combinazioni SLE (SLD sisma)
- 2 combinazioni SLU (accidentali)
- 7 combinazioni SLE (rara)
- 5 combinazioni SLE (frequenti)
- 2 combinazioni SLE (permanenti)

⁻ per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),

⁻ per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Docume	Documento:					
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 34 di 74						

SLU				
SLU	Cmb	Tipo		effetto P-delta
SLU				
4 SLU Comb. SLU A1 4 5 6 SLU Comb. SLU A1 5 6 SLU Comb. SLU A1 6 7 SLU Comb. SLU A1 6 7 SLU Comb. SLU A1 7 8 SLU Comb. SLU A1 8 9 SLU Comb. SLU A1 9 10 SLU Comb. SLU A1 19 11 SLU Comb. SLU A1 19 11 SLU Comb. SLU A1 19 11 SLU Comb. SLU A1 11 12 SLU Comb. SLU A1 11 12 SLU Comb. SLU A1 13 14 SLU Comb. SLU A1 13 15 SLU Comb. SLU A1 13 16 SLU Comb. SLU A1 (SLV sism.) 15 SI 17 SLU Comb. SLU A1 (SLV sism.) 16 SI 18 SLU Comb. SLU A1 (SLV sism.) 16 SI 19 SLU Comb. SLU A1 (SLV sism.) 17 SI 19 SLU Comb. SLU A1 (SLV sism.) 19 SI 20 SLU Comb. SLU A1 (SLV sism.) 20 SI 21 SLU Comb. SLU A1 (SLV sism.) 20 SI 22 SLU Comb. SLU A1 (SLV sism.) 20 SI 22 SLU Comb. SLU A1 (SLV sism.) 21 SI 23 SLU Comb. SLU A1 (SLV sism.) 22 SI 24 SLU Comb. SLU A1 (SLV sism.) 23 SI 25 SLU Comb. SLU A1 (SLV sism.) 23 SI 26 SLU Comb. SLU A1 (SLV sism.) 24 SI 27 SLU Comb. SLU A1 (SLV sism.) 25 SI 28 SLU Comb. SLU A1 (SLV sism.) 26 SI 29 SLU Comb. SLU A1 (SLV sism.) 26 SI 20 SLU Comb. SLU A1 (SLV sism.) 27 SI 21 SLU Comb. SLU A1 (SLV sism.) 28 SI 22 SLU Comb. SLU A1 (SLV sism.) 23 SI 23 SLU Comb. SLU A1 (SLV sism.) 25 SI 24 SLU Comb. SLU A1 (SLV sism.) 25 SI 25 SLU Comb. SLU A1 (SLV sism.) 26 SI 26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 28 SI 28 SLU Comb. SLU A1 (SLV sism.) 28 SI 29 SLU Comb. SLU A1 (SLV sism.) 28 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 31 SI 32 SLU Comb. SLU A1 (SLV sism.) 33 SI 33 SLU Comb. SLU A1 (SLV sism.) 34 SI 34 SLU Comb. SLU A1 (SLV sism.) 35 SI 35 SLU Comb. SLU A1 (SLV sism.) 36 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 36 SI 38 SLU Comb. SLU A1 (SLV sism.) 37 SI 39 SLU Comb. SLU A1 (SLV sism.) 36 SI 30 SLU Comb. SLU A1 (SLV sism.) 37 SI 31 SLU Comb. SLU A1 (SLV sism.) 36 SI 32 SLU Comb. SLU A1 (SLV sism.) 37 SI 33 SLU Comb. SLU A1 (SLV sism.) 36 SI 34 SLU Comb. SLU A1 (SLV sism.) 36 SI 35 SLU Comb. SLU A1 (SLV sism.) 37 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38				
5 SLU Comb. SLU A1 15 6 SLU Comb. SLU A1 6 7 SLU Comb. SLU A1 7 8 SLU Comb. SLU A1 9 9 SLU Comb. SLU A1 10 10 SLU Comb. SLU A1 11 11 SLU Comb. SLU A1 12 12 SLU Comb. SLU A1 13 14 SLU Comb. SLU A1 (SLV sism.) 16 15 SLU Comb. SLU A1 (SLV sism.) 16 16 SLU Comb. SLU A1 (SLV sism.) 16 17 SLU Comb. SLU A1 (SLV sism.) 18 18 SLU Comb. SLU A1 (SLV sism.) 18 19 SLU Comb. SLU A1 (SLV sism.) 20 20 SLU Comb. SLU A1 (SLV sism.) 20 21 SLU Comb. SLU A1 (SLV sism.) 20 21 SLU Comb. SLU A1 (SLV sism.) 22 22 SLU Comb. SLU A1 (SLV sism.) 23 23 SLU Comb. SLU A1 (SLV sism.) 23 24 SLU Comb. SLU A1 (SLV sism.) 23 25 SLU <td></td> <td></td> <td></td> <td></td>				
66 SLU Comb. SLU A1 6 7 SLU Comb. SLU A1 7 8 SLU Comb. SLU A1 8 9 SLU Comb. SLU A1 10 110 SLU Comb. SLU A1 10 111 SLU Comb. SLU A1 11 112 SLU Comb. SLU A1 12 13 SLU Comb. SLU A1 (SLV sism.) 15 14 SLU Comb. SLU A1 (SLV sism.) 16 15 SLU Comb. SLU A1 (SLV sism.) 16 16 SLU Comb. SLU A1 (SLV sism.) 16 17 SLU Comb. SLU A1 (SLV sism.) 18 18 SLU Comb. SLU A1 (SLV sism.) 19 19 SLU Comb. SLU A1 (SLV sism.) 20 20 SLU Comb. SLU A1 (SLV sism.) 20 21 SLU Comb. SLU A1 (SLV sism.) 22 22 SLU Comb. SLU A1 (SLV sism.) 23 23 SLU Comb. SLU A1 (SLV sism.) 25 24 SLU Comb. SLU A1 (SLV sism.) 25 25 SLU Comb. SLU A1 (SLV sism.) 26 27	_			
SLU				
SLU	7			
SLU	8			
111 SLU Comb. SLU A1 12 12 SLU Comb. SLU A1 13 14 SLU Comb. SLU A1 14 15 SLU Comb. SLU A1 (SLV sism.) 15 16 SLU Comb. SLU A1 (SLV sism.) 16 17 SLU Comb. SLU A1 (SLV sism.) 17 18 SLU Comb. SLU A1 (SLV sism.) 19 19 SLU Comb. SLU A1 (SLV sism.) 19 20 SLU Comb. SLU A1 (SLV sism.) 20 21 SLU Comb. SLU A1 (SLV sism.) 21 22 SLU Comb. SLU A1 (SLV sism.) 22 23 SLU Comb. SLU A1 (SLV sism.) 22 24 SLU Comb. SLU A1 (SLV sism.) 25 25 SLU Comb. SLU A1 (SLV sism.) 25 26 SLU Comb. SLU A1 (SLV sism.) 26 27 SLU Comb. SLU A1 (SLV sism.) 27 28 SLU Comb. SLU A1 (SLV sism.) 28 29 SLU Comb. SLU A1 (SLV sism.) 38 30 SLU Comb. SLU A1 (SLV sism.) 39 31 SLU Comb. SLU A1 (SLV sism	9	SLU	Comb. SLU A1 9	
12 SLU Comb. SLU A1 12				
SLU				
14 SLU				
15				
16				SI
17				
SLU				
SLU	18	SLU		SI
21 SLU Comb. SLU A1 (SLV sism.) 21 SI 22 SLU Comb. SLU A1 (SLV sism.) 23 SI 23 SLU Comb. SLU A1 (SLV sism.) 23 SI 24 SLU Comb. SLU A1 (SLV sism.) 24 SI 25 SLU Comb. SLU A1 (SLV sism.) 25 SI 26 SLU Comb. SLU A1 (SLV sism.) 27 SI 27 SLU Comb. SLU A1 (SLV sism.) 28 SI 28 SLU Comb. SLU A1 (SLV sism.) 29 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 33 SI 32 SLU Comb. SLU A1 (SLV sism.) 33 SI 33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 37 SI 37 SLU Comb. SLU A1 (SLV sism.) 38 SI 38 SLU	19	SLU	Comb. SLU A1 (SLV sism.) 19	SI
22 SLU Comb. SLU A1 (SLV sism.) 22 SI 23 SLU Comb. SLU A1 (SLV sism.) 23 SI 24 SLU Comb. SLU A1 (SLV sism.) 24 SI 25 SLU Comb. SLU A1 (SLV sism.) 25 SI 26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 28 SI 28 SLU Comb. SLU A1 (SLV sism.) 28 SI 29 SLU Comb. SLU A1 (SLV sism.) 30 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 33 SI 32 SLU Comb. SLU A1 (SLV sism.) 33 SI 33 SLU Comb. SLU A1 (SLV sism.) 34 SI 34 SLU Comb. SLU A1 (SLV sism.) 35 SI 35 SLU Comb. SLU A1 (SLV sism.) 36 SI 36 SLU Comb. SLU A1 (SLV sism.) 38 SI 37 SLU Comb. SLU A1 (SLV sism.) 39 SI 38 SLU	20			
23 SLU Comb. SLU A1 (SLV sism.) 23 SI 24 SLU Comb. SLU A1 (SLV sism.) 24 SI 25 SLU Comb. SLU A1 (SLV sism.) 25 SI 26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 28 SI 28 SLU Comb. SLU A1 (SLV sism.) 29 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 30 SI 32 SLU Comb. SLU A1 (SLV sism.) 32 SI 33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 40 SI 40 SLU Comb. SLU A1 (SLV sism.) 44 SI 41 SLU	21			
24 SLU Comb. SLU A1 (SLV sism.) 25 SI 25 SLU Comb. SLU A1 (SLV sism.) 25 SI 26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 27 SI 28 SLU Comb. SLU A1 (SLV sism.) 29 SI 29 SLU Comb. SLU A1 (SLV sism.) 30 SI 30 SLU Comb. SLU A1 (SLV sism.) 31 SI 31 SLU Comb. SLU A1 (SLV sism.) 32 SI 32 SLU Comb. SLU A1 (SLV sism.) 33 SI 33 SLU Comb. SLU A1 (SLV sism.) 34 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU				
25 SLU Comb. SLU A1 (SLV sism.) 26 SI 26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 27 SI 28 SLU Comb. SLU A1 (SLV sism.) 28 SI 29 SLU Comb. SLU A1 (SLV sism.) 30 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 32 SI 32 SLU Comb. SLU A1 (SLV sism.) 32 SI 33 SLU Comb. SLU A1 (SLV sism.) 34 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 37 SI 37 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 44 SI 42 SLU				
26 SLU Comb. SLU A1 (SLV sism.) 26 SI 27 SLU Comb. SLU A1 (SLV sism.) 27 SI 28 SLU Comb. SLU A1 (SLV sism.) 28 SI 29 SLU Comb. SLU A1 (SLV sism.) 30 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 31 SI 32 SLU Comb. SLU A1 (SLV sism.) 33 SI 33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 35 SI 35 SLU Comb. SLU A1 (SLV sism.) 36 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU			Comb SLI A1 (SLV SISM) 25	
27 SLU Comb. SLU A1 (SLV sism.) 27 SI 28 SLU Comb. SLU A1 (SLV sism.) 28 SI 29 SLU Comb. SLU A1 (SLV sism.) 29 SI 30 SLU Comb. SLU A1 (SLV sism.) 30 SI 31 SLU Comb. SLU A1 (SLV sism.) 31 SI 32 SLU Comb. SLU A1 (SLV sism.) 32 SI 33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 44 SI 42 SLU Comb. SLU A1 (SLV sism.) 43 SI 43 SLU				
SLU				
SLU	28		` /	
SLU	29	SLU		SI
32 SLU Comb. SLU A1 (SLV sism.) 32 SI 33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48			, ,	
33 SLU Comb. SLU A1 (SLV sism.) 33 SI 34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 43 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLE (SLD Danno sism.) 47 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 48				
34 SLU Comb. SLU A1 (SLV sism.) 34 SI 35 SLU Comb. SLU A1 (SLV sism.) 35 SI 36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI <td< td=""><td></td><td></td><td></td><td></td></td<>				
SLU				
36 SLU Comb. SLU A1 (SLV sism.) 36 SI 37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 40 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 45 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLE (SLD Danno sism.) 45 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI	_			
37 SLU Comb. SLU A1 (SLV sism.) 37 SI 38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 40 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLE (SLD Danno sism.) 45 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI				
38 SLU Comb. SLU A1 (SLV sism.) 38 SI 39 SLU Comb. SLU A1 (SLV sism.) 39 SI 40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLE (SLD Danno sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI<				
40 SLU Comb. SLU A1 (SLV sism.) 40 SI 41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 45 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 57	38	SLU		SI
41 SLU Comb. SLU A1 (SLV sism.) 41 SI 42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 58	39	SLU	Comb. SLU A1 (SLV sism.) 39	
42 SLU Comb. SLU A1 (SLV sism.) 42 SI 43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno s	40			
43 SLU Comb. SLU A1 (SLV sism.) 43 SI 44 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 58 SLD(sis) Comb. SLE (SLD				
444 SLU Comb. SLU A1 (SLV sism.) 44 SI 45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb.				
45 SLU Comb. SLU A1 (SLV sism.) 45 SI 46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 60 SLD(sis) <t< td=""><td></td><td></td><td>` /</td><td></td></t<>			` /	
46 SLU Comb. SLU A1 (SLV sism.) 46 SI 47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 61 SLD(sis)				
47 SLD(sis) Comb. SLE (SLD Danno sism.) 47 SI 48 SLD(sis) Comb. SLE (SLD Danno sism.) 48 SI 49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis)			,	
49 SLD(sis) Comb. SLE (SLD Danno sism.) 49 SI 50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 64 SLD(sis)	47			
50 SLD(sis) Comb. SLE (SLD Danno sism.) 50 SI 51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 65 SLD(sis)	48		Comb. SLE (SLD Danno sism.) 48	SI
51 SLD(sis) Comb. SLE (SLD Danno sism.) 51 SI 52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 66 SLD(sis)	49			
52 SLD(sis) Comb. SLE (SLD Danno sism.) 52 SI 53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 69 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	50			
53 SLD(sis) Comb. SLE (SLD Danno sism.) 53 SI 54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
54 SLD(sis) Comb. SLE (SLD Danno sism.) 54 SI 55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 69 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
55 SLD(sis) Comb. SLE (SLD Danno sism.) 55 SI 56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
56 SLD(sis) Comb. SLE (SLD Danno sism.) 56 SI 57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
57 SLD(sis) Comb. SLE (SLD Danno sism.) 57 SI 58 SLD(sis) Comb. SLE (SLD Danno sism.) 58 SI 59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	56	· · ·	,	
59 SLD(sis) Comb. SLE (SLD Danno sism.) 59 SI 60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	57			
60 SLD(sis) Comb. SLE (SLD Danno sism.) 60 SI 61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	58	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
61 SLD(sis) Comb. SLE (SLD Danno sism.) 61 SI 62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	59			
62 SLD(sis) Comb. SLE (SLD Danno sism.) 62 SI 63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI	60			
63 SLD(sis) Comb. SLE (SLD Danno sism.) 63 SI 64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
64 SLD(sis) Comb. SLE (SLD Danno sism.) 64 SI 65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
65 SLD(sis) Comb. SLE (SLD Danno sism.) 65 SI 66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
66 SLD(sis) Comb. SLE (SLD Danno sism.) 66 SI 67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
67 SLD(sis) Comb. SLE (SLD Danno sism.) 67 SI				
	67			
	68			

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 35 di 74					

Cmb	Tipo	Sigla Id	effetto P-delta
69	SLD(sis)	Comb. SLE (SLD Danno sism.) 69	SI
70	SLD(sis)	Comb. SLE (SLD Danno sism.) 70	SI
71	SLD(sis)	Comb. SLE (SLD Danno sism.) 71	SI
72	SLD(sis)	Comb. SLE (SLD Danno sism.) 72	SI
73	SLD(sis)	Comb. SLE (SLD Danno sism.) 73	SI
74	SLD(sis)	Comb. SLE (SLD Danno sism.) 74	SI
75	SLD(sis)	Comb. SLE (SLD Danno sism.) 75	SI
76	SLD(sis)	Comb. SLE (SLD Danno sism.) 76	SI
77	SLD(sis)	Comb. SLE (SLD Danno sism.) 77	SI
78	SLD(sis)	Comb. SLE (SLD Danno sism.) 78	SI
79	SLU(acc.)	Comb. SLU (Accid.) 79	
80	SLU(acc.)	Comb. SLU (Accid.) 80	
81	SLE(r)	Comb. SLE(rara) 81	
82	SLE(r)	Comb. SLE(rara) 82	
83	SLE(r)	Comb. SLE(rara) 83	
84	SLE(r)	Comb. SLE(rara) 84	
85	SLE(r)	Comb. SLE(rara) 85	
86	SLE(r)	Comb. SLE(rara) 86	
87	SLE(r)	Comb. SLE(rara) 87	
88	SLE(f)	Comb. SLE(freq.) 88	
89	SLE(f)	Comb. SLE(freq.) 89	
90	SLE(f)	Comb. SLE(freq.) 90	
91	SLE(f)	Comb. SLE(freq.) 91	
92	SLE(f)	Comb. SLE(freq.) 92	
93	SLE(p)	Comb. SLE(perm.) 93	
94	SLE(p)	Comb. SLE(perm.) 94	

Cmb		CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
	1.30	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.30	1.30	1.50	0.0	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
_	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.30	1.30	1.50	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
_	1.00	1.00	0.80	0.0	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
_	1.00	1.00	0.80	1.50	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
9	1.30	1.30	1.50	0.0	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	1.30	1.30	1.50	1.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
11	1.30	1.30	1.50	1.05	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
12	1.00	1.00	0.80	0.0	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
13	1.00	1.00	0.80	1.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
14	1.00	1.00	0.80	1.05	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
15	1.00	1.00	1.00	0.60	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	
16	1.00	1.00	1.00	0.60	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	
17	1.00	1.00	1.00	0.60	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	
18	1.00	1.00	1.00	0.60	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	
19	1.00	1.00	1.00	0.60	0.0	-1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	-1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	
21	1.00	1.00	1.00	0.60	0.0	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	
22	1.00	1.00	1.00	0.60	0.0	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	
23	1.00	1.00	1.00	0.60	0.0	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0	
24	1.00	1.00	1.00	0.60	0.0	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	
25	1.00	1.00	1.00	0.60	0.0	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0	
26	1.00	1.00	1.00	0.60	0.0	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	
27	1.00	1.00	1.00	0.60	0.0	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	
28	1.00	1.00	1.00	0.60	0.0	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	
32	1.00	1.00	1.00	0.60	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 36 di 74				

Cmb		CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15 1.00	2/16 1.00	3/17 1.00	4/18 0.60	5/19 0.0	6/20	7/21 -0.30	8/22 1.00	9/23 0.0	10/24 0.0	11/25 0.0	12/26 0.0	13/27	14/28
	1.00	1.00	1.00	0.60	0.0	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	_
	1.00	1.00	1.00	0.60	0.0	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0	-
	1.00	1.00	1.00	0.60	0.0	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	_
	1.00 1.00	1.00	1.00	0.60 0.60	0.0	0.0	0.30	0.0	1.00 0.0	0.0 -1.00	0.0	0.0 -0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	+
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	_
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	_
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	
	1.00 1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0 -0.30	1.00 0.0	0.0 -1.00	0.30	-
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0	-
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	-
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	
70	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	_
	1.00 1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00 1.00	-
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.30	0.0	0.0	+
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+
	1.00	1.00	1.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+
	1.00	1.00	1.00	0.0	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+
	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+
	1.00	1.00	1.00	1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
86	1.00	1.00	1.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.70	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.0	0.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.60	0.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+
94	1.00	1.00	1.00	0.60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

_						
	Docume	nto:				
	C51D_SR1A					
	Rev.	Data				
	Α	Ottobre 2020				
	Pag. 37 di 74					

AZIONE SISMICA VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri d	della struttura	a			
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica
IV	100.0	2.0	200.0	С	T1

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S _s	C _c
Α	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	1,05 · (T _C *) ^{-0,33}
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Docume	Documento:				
C51D_S	SR1A				
Rev.	Data				
Α	Ottobre 2020				
Pag. 38 di 74					

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \left(T \right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

I valori di S_S, T_B, T_C e T_D, sono riportati nella seguenteTabella

· ·				
Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	10.947	43.719	
20276	10.931	43.707	1.847
20277	11.000	43.708	4.417
20055	10.998	43.758	5.946
20054	10.929	43.757	4.451

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	120.0	0.072	2.596	0.277
SLD	63.0	201.0	0.087	2.578	0.285
SLV	10.0	1898.0	0.193	2.406	0.302
SLC	5.0	2475.0	0.209	2.407	0.305

SL	ag	S	Fo	Fv	Tb	Tc	Td
	g				sec	sec	sec
SLO	0.072	1.500	2.596	0.942	0.148	0.444	1.889
SLD	0.087	1.500	2.578	1.025	0.151	0.453	1.947
SLV	0.193	1.421	2.406	1.428	0.157	0.471	2.373
SLC	0.209	1.398	2.407	1.487	0.158	0.474	2.437

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_S	R1A			
Rev.	Data			
Α	Ottobre 2020			
Pag. 39 di 74				

RISULTATI ANALISI SISMICHE LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di ingresso	Angolo di ingresso dell'azione sismica orizzontale
Fattore di	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
importanza	
Zona sismica	Zona sismica
Accelerazione ag	Accelerazione orizzontale massima sul suolo
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di duttilità	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
CD	
Fattore riduz. SLD	Fattore di riduzione dello spettro elastico per lo stato limite di danno
Periodo proprio T1	Periodo proprio di vibrazione della struttura
Coefficiente	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Lambda	
Ordinata spettro	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale (verticale Svd)
Sd(T1)	
Ordinata spettro	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno, componente orizzontale
Se(T1)	(verticale Sve)
Ordinata spettro S	Valore dell' ordinata dello spettro in uso nel tratto costante
(Tb-Tc)	
numero di modi	Numero di modi di vibrare della struttura considerati nell'analisi dinamica
considerati	

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

- a) analisi sismica dinamica con spettro di risposta:
 - quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
 - frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
 - massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.421
			ordinata spettro (tratto Tb-Tc) = 0.661 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.268 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 18
			combinaz. modale: CQC

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 40 di 74		

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	0.0	-46.40	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace X	%		%	M efficace Z	. %	Energia	Energia x v
	Hz		Spettrale	x g daN		x g daN		x g daN			
4		sec	9		05.7		0.0		0.0	0.0	0.0
1	3.735	0.268	0.661	3277.15	95.7	0.0	0.0	0.0	0.0	0.0	0.0
2	3.830	0.261	0.661	0.0	0.0	3424.14	100.0	0.0	0.0	0.0	0.0
3	4.966	0.201	0.661	147.00	4.3	0.0	0.0	0.0	0.0	0.0	0.0
4	6.134	0.163	0.661	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.628	0.0	0.0	0.02	6.56e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.547	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.470	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.438	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.555	0.046	0.389	0.0	0.0	2.53e-04	7.37e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.358	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.754	0.034	0.357	2.37e-03	6.93e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.352	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.987	0.031	0.352	0.02	6.34e-04	0.0	0.0	0.0	0.0	0.0	0.0
14	41.059	0.024	0.335	0.0	0.0	1.98e-04	5.79e-06	0.0	0.0	0.0	0.0
15	46.752	0.021	0.327	0.02	6.43e-04	0.0	0.0	0.0	0.0	0.0	0.0
16	99.453	0.010	0.299	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
17	100.889	0.010	0.299	0.04	1.18e-03	0.0	0.0	0.0	0.0	0.0	0.0
18	116.499	0.009	0.296	0.0	0.0	0.03	8.91e-04	0.0	0.0	0.0	0.0
Risulta		1		3424.24		3424.20		3423.24			
In				100.00		100.00		99.97			
percentuale											

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.421
			ordinata spettro (tratto Tb-Tc) = 0.661 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.268 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 18
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	0.0	46.40	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		хg		x g			
	Hz	sec	g	daN		daN		daN			
1	3.735	0.268	0.661	3277.15	95.7	0.0	0.0	0.0	0.0	0.0	0.0
2	3.830	0.261	0.661	0.0	0.0	3424.14	100.0	0.0	0.0	0.0	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:								
C51D_SR1A								
Rev. Data								
A Ottobre 2020								
Pag. 41 di 74								

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	2 %	Energia	Energia x v
			Spettrale	x g		x g		x g			
3	4.966	0.201	0.661	147.00	4.3	0.0	0.0	0.0	0.0	0.0	0.0
4	6.134	0.163	0.661	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.628	0.0	0.0	0.02	6.56e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.547	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.470	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.438	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.555	0.046	0.389	0.0	0.0	2.53e-04	7.37e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.358	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.754	0.034	0.357	2.37e-03	6.93e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.352	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.987	0.031	0.352	0.02	6.34e-04	0.0	0.0	0.0	0.0	0.0	0.0
14	41.059	0.024	0.335	0.0	0.0	1.98e-04	5.79e-06	0.0	0.0	0.0	0.0
15	46.752	0.021	0.327	0.02	6.43e-04	0.0	0.0	0.0	0.0	0.0	0.0
16	99.453	0.010	0.299	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
17	100.889	0.010	0.299	0.04	1.18e-03	0.0	0.0	0.0	0.0	0.0	0.0
18	116.499	0.009	0.296	0.0	0.0	0.03	8.91e-04	0.0	0.0	0.0	0.0
Risulta				3424.24		3424.20		3423.24			
In				100.00		100.00		99.97			
percentuale											

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.421
			ordinata spettro (tratto Tb-Tc) = 0.661 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.262 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 18
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	17.75	0.0	177.50	-464.00	1.477	0.0	0.0
Risulta	3424 24									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	3.796	0.263	0.661	3424.15	100.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.820	0.262	0.661	0.0	0.0	3394.04	99.1	0.0	0.0	0.0	0.0
3	4.853	0.206	0.661	0.0	0.0	30.10	0.9	0.0	0.0	0.0	0.0
4	6.134	0.163	0.661	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.628	0.0	0.0	0.02	6.60e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.547	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.470	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.438	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.848	0.046	0.387	0.0	0.0	2.74e-04	8.00e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.358	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.719	0.034	0.357	2.25e-03	6.57e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.352	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.972	0.031	0.352	0.02	6.37e-04	0.0	0.0	1.51e-05	0.0	0.0	0.0

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:								
C51D_SR1A								
Rev. Data								
A Ottobre 2020								
Pag. 42 di 74								

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Υxg		x g			
14	46.538	0.021	0.328	0.02	5.86e-04	0.0	0.0	2.31e-06	0.0	0.0	0.0
15	99.453	0.010	0.299	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
16	99.731	0.010	0.299	0.04	1.09e-03	0.0	0.0	2.81e-04	8.22e-06	0.0	0.0
17	106.588	0.009	0.298	0.0	0.0	0.03	7.91e-04	0.0	0.0	0.0	0.0
18	128.229	0.008	0.294	3.29e-03	9.60e-05	0.0	0.0	1.01e-06	0.0	0.0	0.0
Risulta				3424.24		3424.19		3423.24			
In				100.00		100.00		99.97			
percentuale											

CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.421
			ordinata spettro (tratto Tb-Tc) = 0.661 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.262 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 18
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	-17.75	0.0	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	3.796	0.263	0.661	3424.15	100.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.820	0.262	0.661	0.0	0.0	3394.04	99.1	0.0	0.0	0.0	0.0
3	4.853	0.206	0.661	0.0	0.0	30.10	0.9	0.0	0.0	0.0	0.0
4	6.134	0.163	0.661	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.628	0.0	0.0	0.02	6.60e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.547	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.470	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.438	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.848	0.046	0.387	0.0	0.0	2.74e-04	8.00e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.358	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.719	0.034	0.357	2.25e-03	6.57e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.352	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.972	0.031	0.352	0.02	6.37e-04	0.0	0.0	1.51e-05	0.0	0.0	0.0
14	46.538	0.021	0.328	0.02	5.86e-04	0.0	0.0	2.31e-06	0.0	0.0	0.0
15	99.453	0.010	0.299	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
16	99.731	0.010	0.299	0.04	1.09e-03	0.0	0.0	2.81e-04	8.22e-06	0.0	0.0
17	106.588	0.009	0.298	0.0	0.0	0.03	7.91e-04	0.0	0.0	0.0	0.0
18	128.229	0.008	0.294	3.29e-03	9.60e-05	0.0	0.0	1.01e-06	0.0	0.0	0.0
Risulta				3424.24		3424.19		3423.24			
ln				100.00		100.00		99.97			
percentuale											

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:									
C51D_SR1A									
Rev. Data									
Α	A Ottobre 2020								
Pag. 43 di 74									

CDC	Tipo	Sigla Id	Note
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.335 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.268 sec.
			numero di modi considerati: 18
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	0.0	-46.40	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	3.735	0.268	0.335	3277.15	95.7	0.0	0.0	0.0	0.0	0.0	0.0
2	3.830	0.261	0.335	0.0	0.0	3424.14	100.0	0.0	0.0	0.0	0.0
3	4.966	0.201	0.335	147.00	4.3	0.0	0.0	0.0	0.0	0.0	0.0
4	6.134	0.163	0.335	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.325	0.0	0.0	0.02	6.56e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.280	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.238	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.220	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.555	0.046	0.193	0.0	0.0	2.53e-04	7.37e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.176	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.754	0.034	0.176	2.37e-03	6.93e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.173	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.987	0.031	0.173	0.02	6.34e-04	0.0	0.0	0.0	0.0	0.0	0.0
14	41.059	0.024	0.163	0.0	0.0	1.98e-04	5.79e-06	0.0	0.0	0.0	0.0
15	46.752	0.021	0.159	0.02	6.43e-04	0.0	0.0	0.0	0.0	0.0	0.0
16	99.453	0.010	0.144	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
17	100.889	0.010	0.144	0.04	1.18e-03	0.0	0.0	0.0	0.0	0.0	0.0
18	116.499	0.009	0.142	0.0	0.0	0.03	8.91e-04	0.0	0.0	0.0	0.0
Risulta				3424.24		3424.20		3423.24			
In percentuale				100.00		100.00		99.97			

CDC	Tipo	Sigla Id	Note
11	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.335 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.268 sec.
			numero di modi considerati: 18
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:									
C51D_SR1A									
Rev.	Rev. Data								
A Ottobre 2020									
Pag. 44 di 74									

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
344.00	3424.24	177.50	-464.00	0.0	46.40	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	3.735	0.268	0.335	3277.15	95.7	0.0	0.0	0.0	0.0	0.0	0.0
2	3.830	0.261	0.335	0.0	0.0	3424.14	100.0	0.0	0.0	0.0	0.0
3	4.966	0.201	0.335	147.00	4.3	0.0	0.0	0.0	0.0	0.0	0.0
4	6.134	0.163	0.335	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.325	0.0	0.0	0.02	6.56e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.280	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.238	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.220	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.555	0.046	0.193	0.0	0.0	2.53e-04	7.37e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.176	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.754	0.034	0.176	2.37e-03	6.93e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.173	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.987	0.031	0.173	0.02	6.34e-04	0.0	0.0	0.0	0.0	0.0	0.0
14	41.059	0.024	0.163	0.0	0.0	1.98e-04	5.79e-06	0.0	0.0	0.0	0.0
15	46.752	0.021	0.159	0.02	6.43e-04	0.0	0.0	0.0	0.0	0.0	0.0
16	99.453	0.010	0.144	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
17	100.889	0.010	0.144	0.04	1.18e-03	0.0	0.0	0.0	0.0	0.0	0.0
18	116.499	0.009	0.142	0.0	0.0	0.03	8.91e-04	0.0	0.0	0.0	0.0
Risulta				3424.24		3424.20		3423.24			
In				100.00		100.00		99.97			
percentuale											

CDC	Tipo	Sigla Id	Note
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.335 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.262 sec.
			numero di modi considerati: 18
			combinaz. modale: CQC

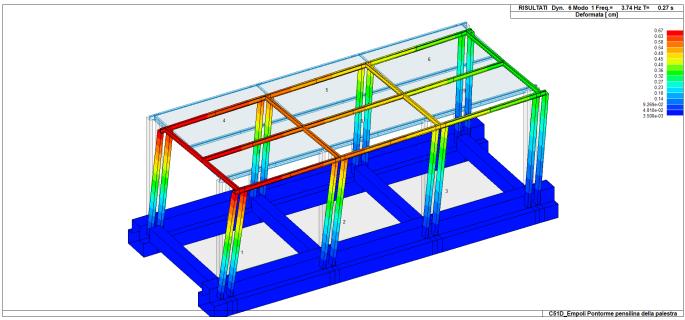
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	17.75	0.0	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	3.796	0.263	0.335	3424.15	100.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.820	0.262	0.335	0.0	0.0	3394.04	99.1	0.0	0.0	0.0	0.0
3	4.853	0.206	0.335	0.0	0.0	30.10	0.9	0.0	0.0	0.0	0.0
4	6.134	0.163	0.335	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.325	0.0	0.0	0.02	6.60e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.280	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0

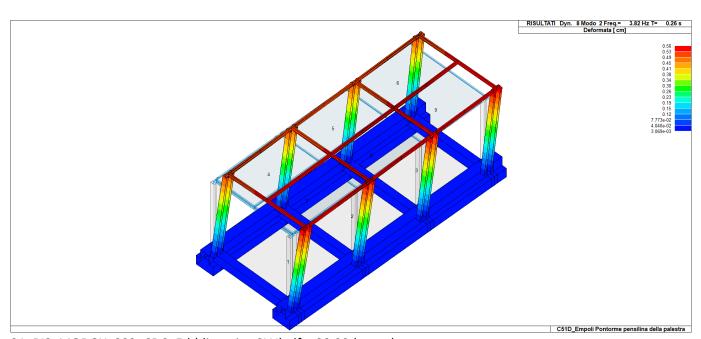
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
A Ottobre 2020				
Pag. 45 di 74				

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
7	12.587	0.079	0.238	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.220	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.848	0.046	0.192	0.0	0.0	2.74e-04	8.00e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.176	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.719	0.034	0.176	2.25e-03	6.57e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.173	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.972	0.031	0.173	0.02	6.37e-04	0.0	0.0	1.51e-05	0.0	0.0	0.0
14	46.538	0.021	0.159	0.02	5.86e-04	0.0	0.0	2.31e-06	0.0	0.0	0.0
15	99.453	0.010	0.144	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
16	99.731	0.010	0.144	0.04	1.09e-03	0.0	0.0	2.81e-04	8.22e-06	0.0	0.0
17	106.588	0.009	0.143	0.0	0.0	0.03	7.91e-04	0.0	0.0	0.0	0.0
18	128.229	0.008	0.141	3.29e-03	9.60e-05	0.0	0.0	1.01e-06	0.0	0.0	0.0
Risulta				3424.24		3424.19		3423.24			
In				100.00		100.00		99.97			
percentuale											


CDC	Tipo	Sigla Id	Note
13	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.335 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.262 sec.
			numero di modi considerati: 18
			combinaz. modale: CQC

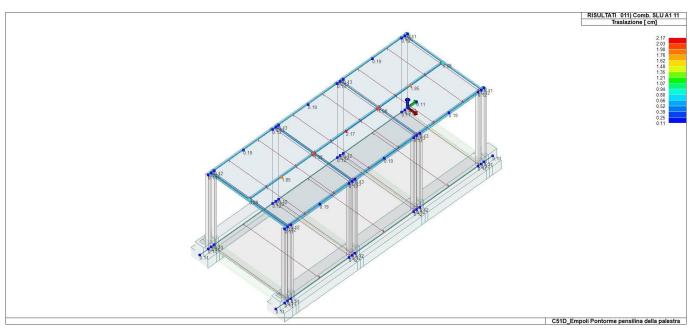
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
344.00	3424.24	177.50	-464.00	-17.75	0.0	177.50	-464.00	1.477	0.0	0.0
Risulta	3424.24									


Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	3.796	0.263	0.335	3424.15	100.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.820	0.262	0.335	0.0	0.0	3394.04	99.1	0.0	0.0	0.0	0.0
3	4.853	0.206	0.335	0.0	0.0	30.10	0.9	0.0	0.0	0.0	0.0
4	6.134	0.163	0.335	0.0	0.0	0.0	0.0	1248.64	36.5	0.0	0.0
5	6.965	0.144	0.325	0.0	0.0	0.02	6.60e-04	0.0	0.0	0.0	0.0
6	9.045	0.111	0.280	0.0	0.0	0.0	0.0	161.89	4.7	0.0	0.0
7	12.587	0.079	0.238	0.0	0.0	5.74e-03	1.68e-04	0.0	0.0	0.0	0.0
8	15.054	0.066	0.220	0.0	0.0	0.0	0.0	52.10	1.5	0.0	0.0
9	21.848	0.046	0.192	0.0	0.0	2.74e-04	8.00e-06	0.0	0.0	0.0	0.0
10	29.380	0.034	0.176	0.0	0.0	0.0	0.0	43.19	1.3	0.0	0.0
11	29.719	0.034	0.176	2.25e-03	6.57e-05	0.0	0.0	0.0	0.0	0.0	0.0
12	31.942	0.031	0.173	0.0	0.0	0.0	0.0	797.83	23.3	0.0	0.0
13	31.972	0.031	0.173	0.02	6.37e-04	0.0	0.0	1.51e-05	0.0	0.0	0.0
14	46.538	0.021	0.159	0.02	5.86e-04	0.0	0.0	2.31e-06	0.0	0.0	0.0
15	99.453	0.010	0.144	0.0	0.0	0.0	0.0	1119.59	32.7	0.0	0.0
16	99.731	0.010	0.144	0.04	1.09e-03	0.0	0.0	2.81e-04	8.22e-06	0.0	0.0
17	106.588	0.009	0.143	0.0	0.0	0.03	7.91e-04	0.0	0.0	0.0	0.0
18	128.229	0.008	0.141	3.29e-03	9.60e-05	0.0	0.0	1.01e-06	0.0	0.0	0.0
Risulta				3424.24		3424.19		3423.24			
In percentuale				100.00		100.00		99.97			

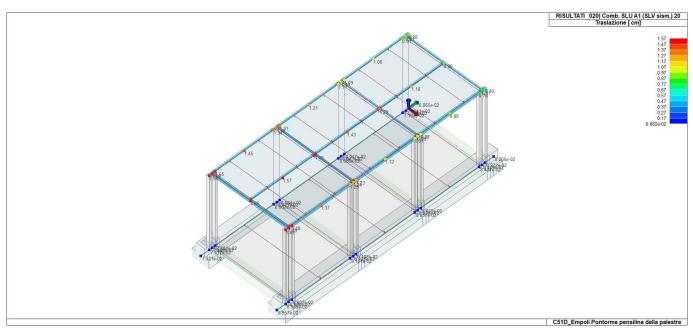
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:			
C51D_SR1A			
Rev.	Data		
Α	Ottobre 2020		
Pag. 46 di 74			

31_RIS_MODOX_001_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)


31_RIS_MODOY_002_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)

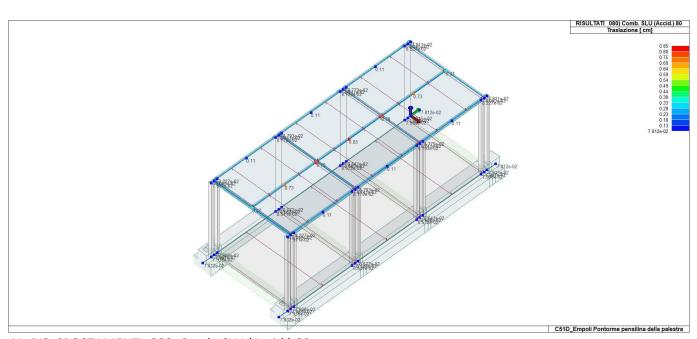
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI


RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 47 di 74				

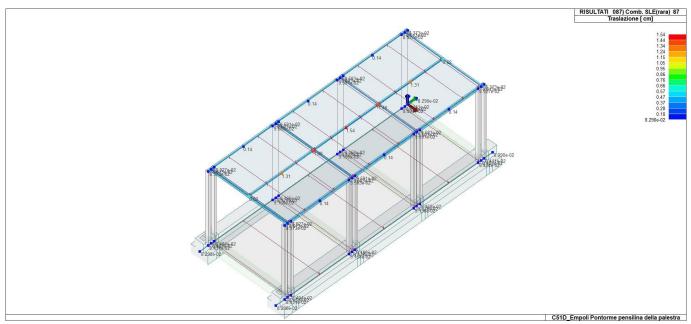
RISULTATI NODALI

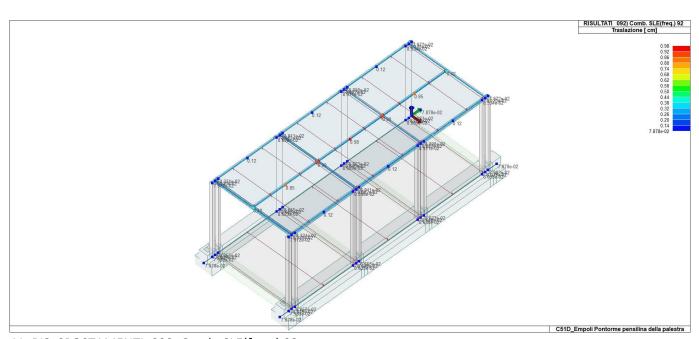

41_RIS_SPOSTAMENTI_011_Comb. SLU A1 11


41_RIS_SPOSTAMENTI_020_Comb. SLU A1 (SLV sism.) 20

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

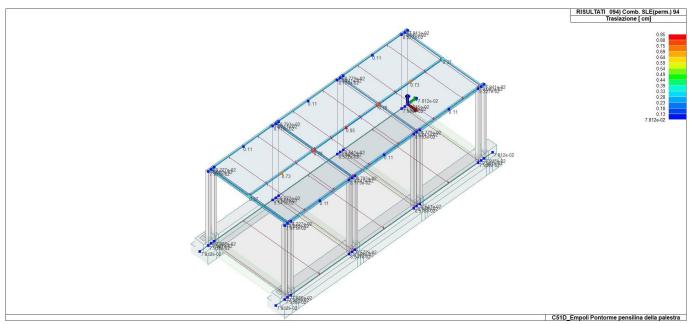
Documento:			
C51D_SR1A			
Rev.	Data		
Α	Ottobre 2020		
Pag. 48 di 74			


41_RIS_SPOSTAMENTI_076_Comb. SLE (SLD Danno sism.) 76


41_RIS_SPOSTAMENTI_080_Comb. SLU (Accid.) 80

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:			
C51D_SR1A			
Rev.	Data		
A Ottobre 2020			
Pag. 49 di 74			


41_RIS_SPOSTAMENTI_087_Comb. SLE(rara) 87

41_RIS_SPOSTAMENTI_092_Comb. SLE(freq.) 92

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:	
C51D_SR1A	
Rev.	Data
Α	Ottobre 2020
Pag. 50 di 74	

41_RIS_SPOSTAMENTI_094_Comb. SLE(perm.) 94

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

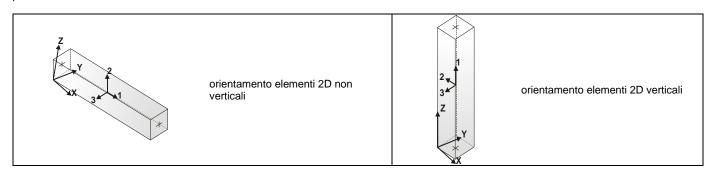
	Documento:		
C51D_SR1A		R1A	
	Rev.	Data	
	Α	Ottobre 2020	
	Pag. 51 di 74		

RISULTATI ELEMENTI TIPO TRAVE LEGENDA RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

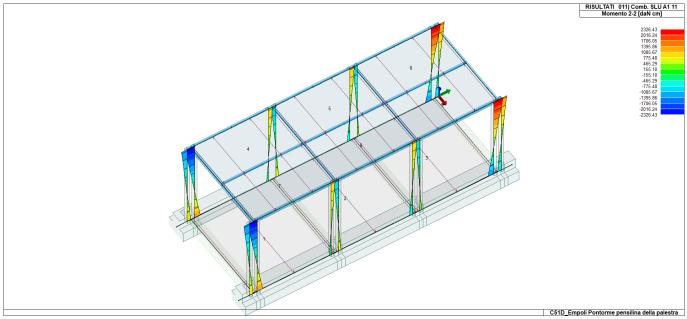
- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione

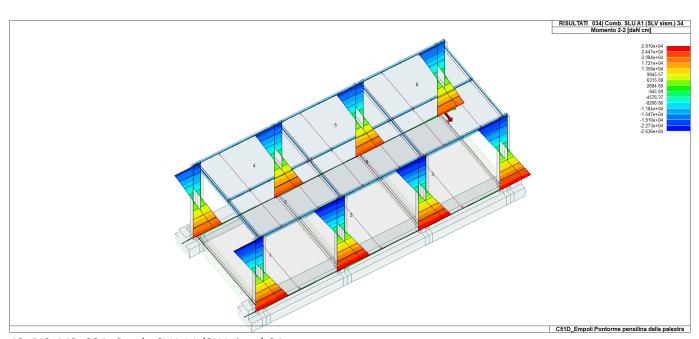

Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

Per gli elementi tipo pilastro sono riportati in tabella i seguenti valori:

Pilas.	numero dell'elemento pilastro
Cmb	combinazione in cui si verificano i valori riportati
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)
Pos.	ascissa del punto iniziale e finale dell'elemento
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento

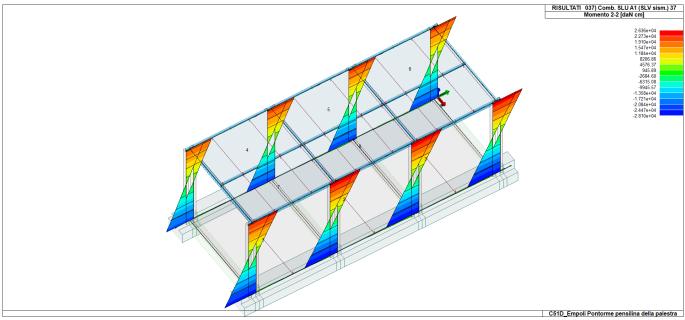
Per gli elementi tipo trave in elevazione sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

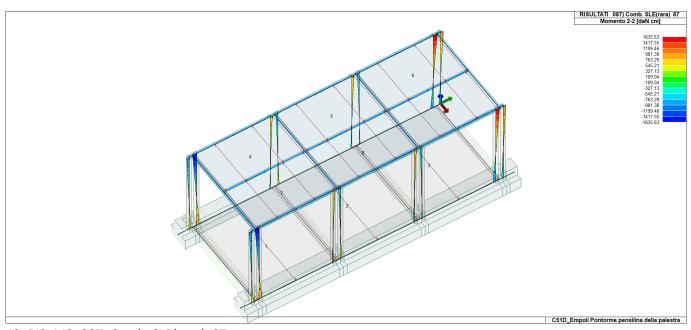

Per gli elementi tipo trave in fondazione (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.


Pilas.	M3 mx/mn M2 mx/mn -6.466e+04 -2.810e+04 6.466e+04 2.810e+04	D 2 / D 3 -1.47 1.47	Q 2 / Q 3 0.0 0.0	N -1571.77 1363.57	V 2 -190.44 190.44	V 3 -158.31 158.31	T -1152.37 1152.37
Trave	M3 mx/mn M2 mx/mn -1.071e+05 -2632.97 1.186e+05 2632.97	D 2 / D 3 -1.85 1.85	Q 2 / Q 3 -1384.50 0.0	N -156.41 145.87	V 2 -1493.97 1493.97	V 3 -242.45 242.45	T -1514.03 1514.03
Trave f.	M3 mx/mn M2 mx/mn -6.288e+04 -2426.54 1.457e+05 2426.54	D 2 / D 3 -0.02 0.02	Pt -0.56 -0.29	N -86.35 92.11	V 2 -1967.03 1967.03		T 7.125e+04 7.125e+04

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

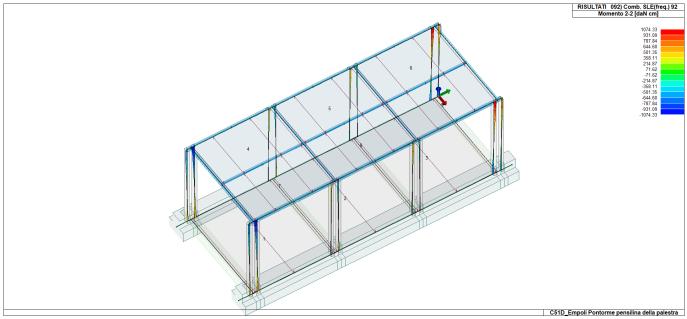
Docume	Documento:		
C51D_S	C51D_SR1A		
Rev.	Data		
Α	Ottobre 2020		
F	Pag. 52 di 74		

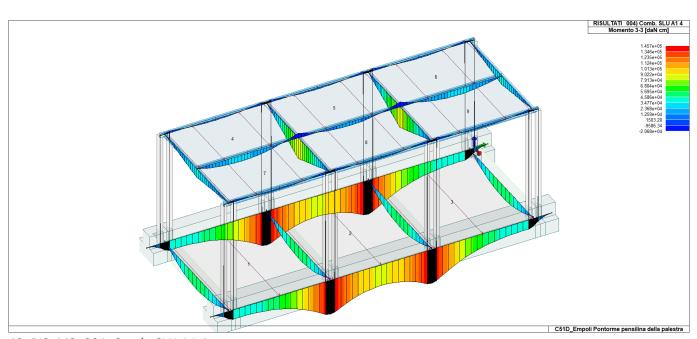

43_RIS_M2_011_Comb. SLU A1 11


43_RIS_M2_034_Comb. SLU A1 (SLV sism.) 34

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

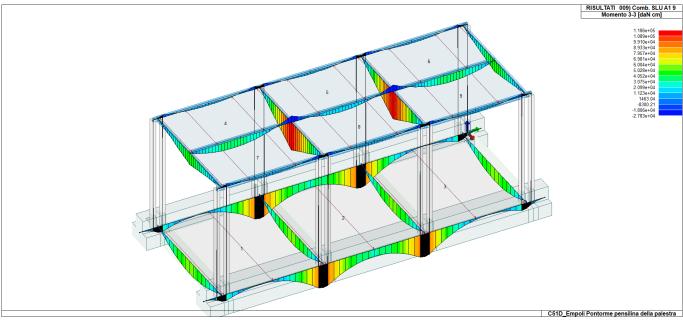
Documento:		
C51D SR1A		
Rev.	Data	
۸	Ottobre 2020	
A Ollobie 2020		
Pag. 53 di 74		

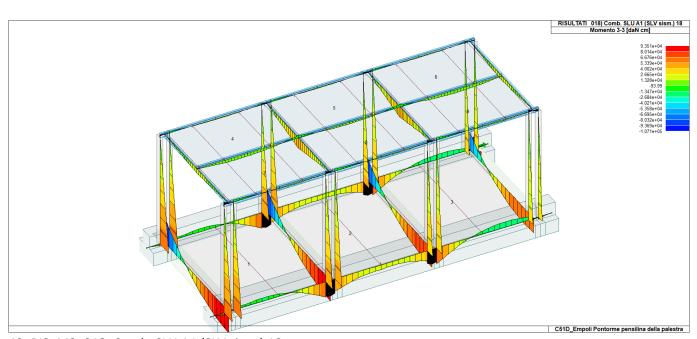

43_RIS_M2_037_Comb. SLU A1 (SLV sism.) 37


43_RIS_M2_087_Comb. SLE(rara) 87

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

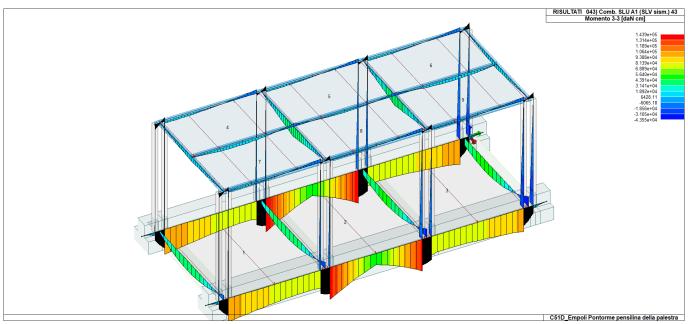
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 54 di 74		

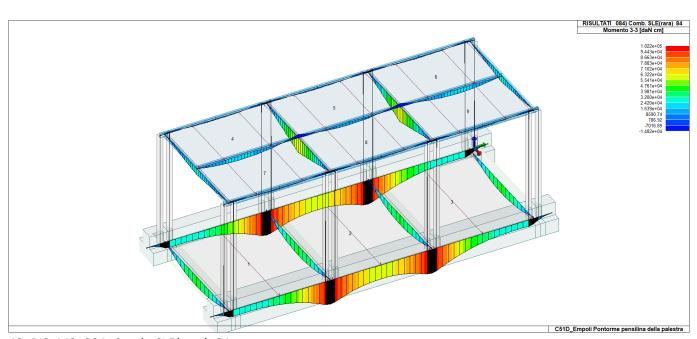

43_RIS_M2_092_Comb. SLE(freq.) 92


43_RIS_M3_004_Comb. SLU A1 4

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

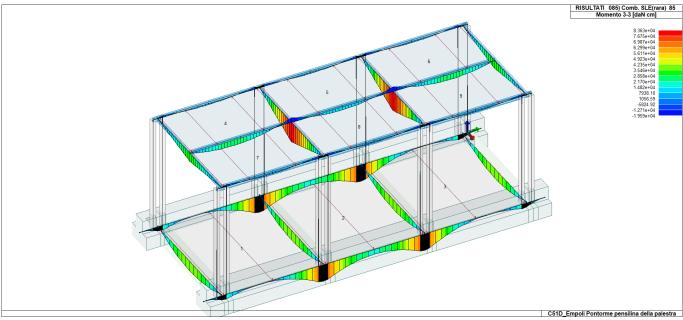
D		
Documento:		
C51D_SR1A		
Rev.	Data	
Α	Ottobre 2020	
Pag. 55 di 74		

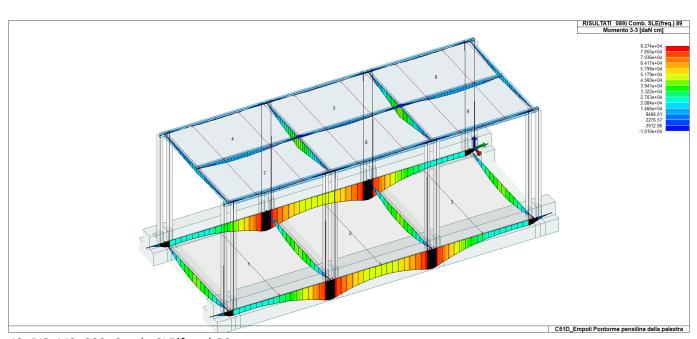

43_RIS_M3_009_Comb. SLU A1 9


43_RIS_M3_018_Comb. SLU A1 (SLV sism.) 18

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

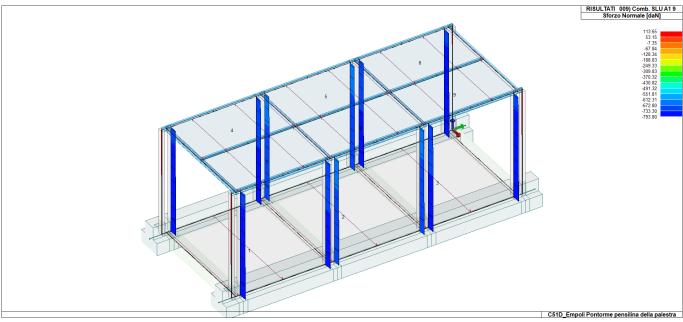
Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 56 di 74				

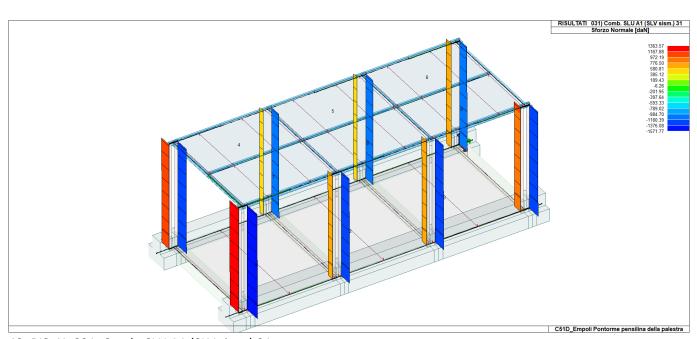

43_RIS_M3_043_Comb. SLU A1 (SLV sism.) 43


43_RIS_M3_084_Comb. SLE(rara) 84

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

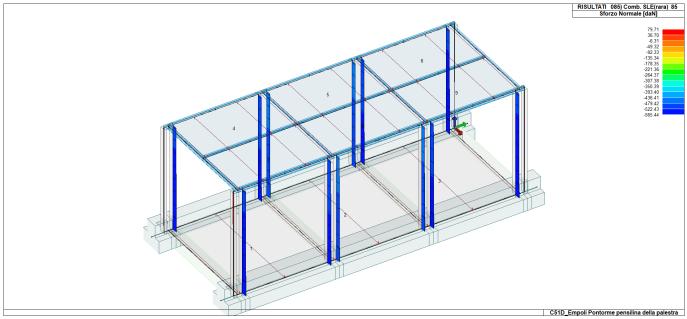
Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 57 di 74				

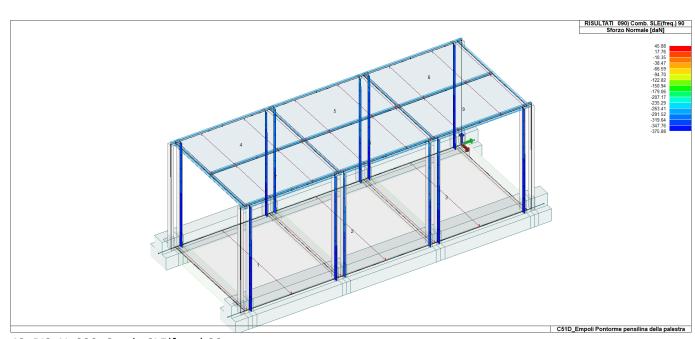

43_RIS_M3_085_Comb. SLE(rara) 85


43_RIS_M3_089_Comb. SLE(freq.) 89

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 58 di 74				

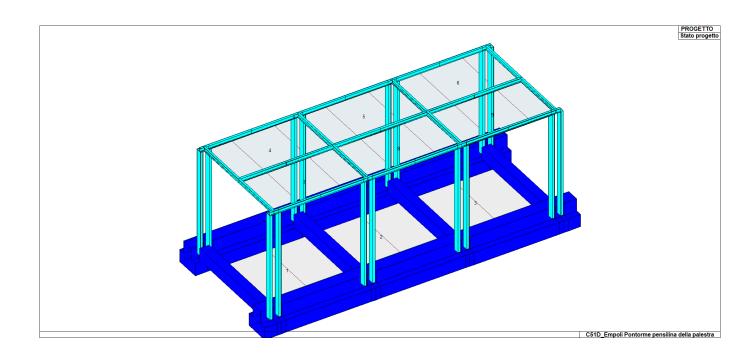

43_RIS_N_009_Comb. SLU A1 9

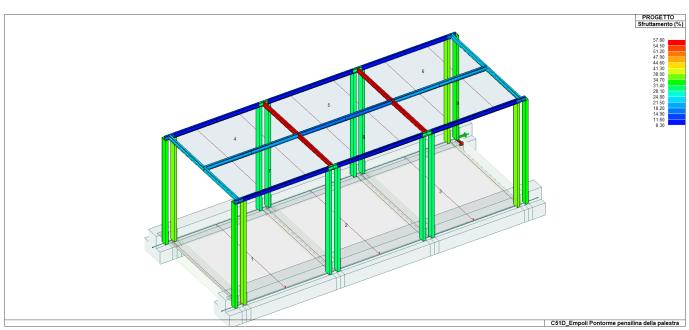

43_RIS_N_031_Comb. SLU A1 (SLV sism.) 31

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:			
C51D_SR1A			
Rev.	Data		
Α	Ottobre 2020		
Pag. 59 di 74			

43_RIS_N_085_Comb. SLE(rara) 85


43_RIS_N_090_Comb. SLE(freq.) 90


REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:			
C51D_SR1A			
Rev.	Data		
Α	Ottobre 2020		
Pag. 60 di 74			

VERIFICHE PER ELEMENTI IN ACCIAIO

73_PRO_ST_SFRUTTAMENTO

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 61 di 74				

STATI LIMITE D' ESERCIZIO ACCIAIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO ACCIAIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, per gli elementi trave, i risultati relativi alle combinazioni considerate (rare o caratteristiche).

I valori di interesse sono i seguenti:

f*1000/L	massima deformazione normalizzata in combinazioni rare
----------	--

Si precisa che i valori di massima deformazione per travi sono riferiti ai due piani locali (1-2 con momenti flettenti 3-3 e 1-3 con momenti flettenti 2-2). Il valore riportato (massimo) è espresso in 1000/L per rendere agevole il confronto di più valori e in particolare di più range di valori (ad esempio 2 rappresenta L/500, 4 L/250 e cosi via).

Trave	f*1000/L												
17	0.2	18	0.3	19	6.32e-02	20	0.3	21	6.23e-02	22	0.4	23	0.2
24	0.3	25	6.32e-02	26	0.3	27	6.23e-02	28	0.4	29	0.2	30	0.2
31	0.4	32	0.3	33	0.3	34	0.4	35	0.3	36	0.3	37	0.2
38	6.23e-02	39	6.32e-02	40	6.23e-02	41	6.32e-02	42	0.2	43	7.4	44	7.4
45	3.0	46	0.2	47	0.2	48	3.0	49	7.4	50	7.4	51	3.0
52	3.0	53	4.6	54	0.9	55	0.6	56	0.6	57	0.9	58	4.6

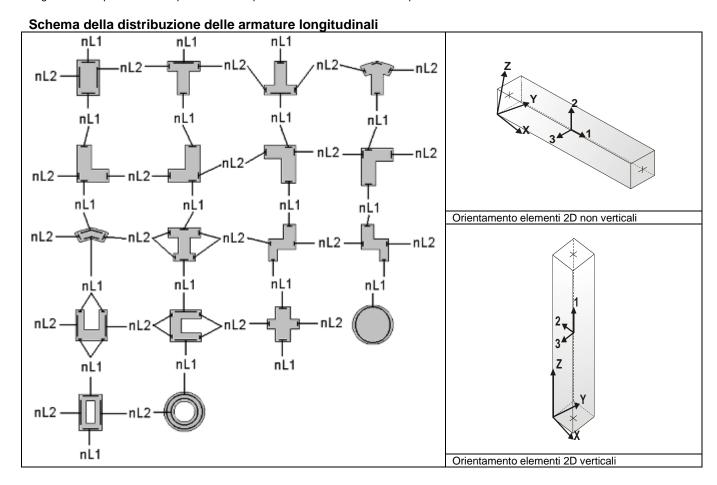
REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_SR1A				
Rev.	Data			
Α	Ottobre 2020			
Pag. 62 di 74				

VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A. LEGENDA TABELLA VERIFICHE ELEMENTI TRAVE E/O PILASTRO IN C.A.

In tabella vengono riportati per ogni elemento il numero identificativo ed il codice di verifica con le sigle Ok o NV.


Nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite (S.L.) vengono riportati: il rapporto x/d, le verifiche per sollecitazioni proporzionali e la verifica per compressione media con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui si sia proceduto alla progettazione con le tensioni ammissibili (**T.A.**) vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima compressione media nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale) con l'indicazione delle combinazioni in cui si sono attinti i rispettivi valori.

Nel caso in cui la struttura abbia comportamento dissipativo e sia prevista la progettazione con il criterio della gerarchia delle resistenze (G.R.) vengono riportate le verifiche di sovraresistenza e del nodo.

Per gli elementi tipo pilastro sono riportati numero e diametro dei ferri di vertice, numero e diametro di ferri disposti lungo i lati L1 (paralleli alla base della sezione) e lungo i lati L2 (paralleli all'altezza della sezione).

Per gli elementi tipo trave sono riportati infine le quantità di armatura inferiore e superiore.

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:				
C51D_S	C51D_SR1A			
Rev.	Data			
Α	Ottobre 2020			
Pag. 63 di 74				

PROGETTAZIONE DELLE FONDAZIONI

II D.M.17/01/2018 - par: 7.2.5 prevede:

"Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le seguenti:

- quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo;
- > […]:
- quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

Nel contesto visualizzazione risultati e nella stampa della relazione sulle fondazioni PRO_SAP mostra le sollecitazioni che derivano dall'analisi non incrementate sia in termini di pressioni sul terreno che in termini di sollecitazioni.

La progettazione degli elementi strutturali con proprietà fondazione è effettuata da PRO_SAP (per travi e platee) o da PRO_CAD Plinti (per plinti e pali di fondazione) incrementando le sollecitazioni delle combinazioni con sisma di un coefficiente pari 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

Per i bicchieri dei plinti di fondazione prefabbricati l'incremento delle sollecitazioni ha un fattore pari a 1.2 in CDB e 1.35 in CDA.

N.B.: nel caso di comportamento strutturale non dissipativo la progettazione viene effettuata senza nessun incremento.

Le verifiche geotecniche vengono effettuate dal modulo geotecnico incrementando automaticamente le sollecitazioni del fattore 1.1 in CDB e 1.3 in CDA per pali, plinti, travi e platee.

N.B.: nel caso di comportamento strutturale non dissipativo le verifiche geotecniche vengono effettuate senza nessun incremento.

Simbologia adottata nelle tabelle di verifica

Per le verifiche agli S.L. dei pilastri è presente una tabella con i simboli di seguito descritti:

M_P X Y	Numero della pilastrata (P) e posizione in pianta (X,Y)
Pilas.	numero identificativo dell'elemento D2
Note	Codici identificativi delle sezione (s) e materiale (m) pilastro
Stato	Codici relativi all'esito delle verifiche effettuate appresso descritte
Quota	Quota sezione di verifica
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo
r. snell.	Rapporto di snellezza λ su λ*: valore superiore a 1 per elementi snelli nel caso in cui viene effettuata la verifica con il metodo diretto dello stato di equilibrio
Armat. long.	Numero e diametro (d) dei ferri di armatura longitudinale distinti in ferri di vertice + ferri di lato nelle posizioni nL1 e nL2, come da schemi in figura precedente
V N/M	Verifica a pressoflessione con rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva
V N sis	Verifica a compressione solo calcestruzzo con rapporto Nsd/Nrd ed Nrd calcolato come al punto 7.4.4.2.1: valore minore o uguale a 1 per verifica positiva
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il pilastro

Per le verifiche alla G.R. dei pilastri è presente una tabella con i simboli di seguito descritti:

Pilas.	numero identificativo dell'elemento D2 pilastro
sovr. Xi (Xf)	Verifica sovraresistenza come da formula 7.4.4 in direzione X, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del γ_{Rd} adottato
sovr. Yi (Yf)	Verifica sovraresistenza come da formula 7.4.4 in direzione Y, alla base (i) ed alla sommità (f): rapporto tra i momenti
	resistenti dei pilastri e delle travi. La verifica è positiva se maggiore del γ_{Rd} adottato
M 2-2 i (f)	Valore del momento resistente 2-2 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale di calcolo
M 3-3 i (f)	Valore del momento resistente 3-3 alla base (i) ed alla sommità (f) con massimo momento in presenza dello sforzo normale di calcolo
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M2-2 (M3-3)	Valore del taglio generato dai momenti resistenti 2-2 (3-3)

Per le verifiche dei dettagli costruttivi per la duttilità è presente una tabella con i simboli di seguito descritti: (Non presente nel caso di comportamento strutturale non dissipativo)

(INOTE PRESENTE HEI	caso di comportamento strutturale non dissipativo)
Pilas	Numero identificativo D2 pilastro
ni	Sforzo assiale adimensionalizzato di progetto relativo alla combinazione sismica SLV
alfaomega	Prodotto tra il coefficiente di efficacia del confinamento e il rapporto meccanico dell'armatura trasversale di
	confinamento all'interno del nodo
V.7.4.29 2-2 (3-3)	Rapporto tra la domanda di staffe minima nel nodo e il rapporto meccanico dell'armatura trasversale di confinamento inserito all'interno del nodo in direzione 2 (3)
V. 7.4.29 Stato	Codici relativi all'esito della verifica 7.4.29

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:						
C51D_SR1A						
Rev. Data						
A Ottobre 2020						
Pag. 64 di 74						

dmu_fi 2-2 (3-3)	Domanda in duttilità di curvatura in direzione 2 (3)
cmu_fi 2-2 (3-3)	Capacità in duttilità di curvatura in direzione 2 (3)
V. dutt. 2-2 (3-3)	Rapporto tra la domanda in duttilità di curvatura e la capacità in duttilità di curvatura in direzione 2 (3)

Per le verifiche nodi trave-pilastro di elementi nuovi è presente una tabella con i simboli di seguito descritti:

Nodo	Numero identificativo del nodo trave-pilastro							
Stato	Esito delle verifiche							
Pilastro	Numero identificativo D2 pilastro							
Diam st	Diametro staffe nodo							
Passo	Passo staffe nodo							
n. br. 2 (3)	Numero braccia staffe per il taglio in direzione 2 (3)							
Bj2 (3)	Larghezza effettiva del nodo per il taglio in direzione 2 (3)							
Hjc2 (3)	Distanza tra le giaciture più esterne delle armature del pilastro per il taglio in direzione 2 (3)							
V. 7.4.8	Rapporto tra il taglio Vibd e il taglio resistente come da formula 7.4.8							
V. Ash	Rapporto tra il passo staffe calcolato secondo il capitolo 7.4.4.3.1. e il passo staffe effattivamente inserita nel nodo. Nel caso di valore indica passo staffe utilizzato deriva dalle formule presenti nel paragrafo 7.4.4.3.1. Nel caso di valore minore di 1 il passo staffe utilizzato deriva del pilastro superiore o inferiore al nodo							
7.4.10	Check passo staffe valutato in funzione della formula 7.4.10: SI il passo staffe è calcolato utilizzando la formula 7.4.10;							
	 NO il passo staffe è calcolato utilizzando le formule 7.4.11 e/o 7.4.12; NR calcolo passo staffe non richiesto; 							
Rif. comb.	Riferimento combinazioni da cui si generano le verifiche più gravose per il nodo							

Per le verifiche nodi trave-pilastro di elementi esistenti è presente una tabella con i simboli di seguito descritti:

0. 10 10.111011	o noar trave priactio ar cicinenti colotenti o procente ana tabella cen i cimber ar cegate acconta.
Pilastro I	Numero identificativo D2 del pilastro inferiore.
Pilastro S	Numero identificativo D2 del pilastro superiore.
Nodo	Numero identificativo del nodo trave-pilastro.
SL cod	Stato limite di riferimento e relativo esito delle verifiche.
ver. (+)	Fattore di sicurezza nei riguardi della verifica di resistenza a compressione (verificato se < 1.00).
V +	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a compressione.
V + af s	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a
	compressione.
N +	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a compressione.
ver. (-)	Fattore di sicurezza nei riguardi della verifica di resistenza a trazione (verificato se < 1.00).
V -	Azione di Taglio presente al di sopra del nodo nella verifica di resistenza a trazione.
V - af s	Sollecitazione di trazione presente nell' armatura longitudinale superiore della trave nella verifica di resistenza a
	trazione.
N -	Azione Assiale presente al di sopra del nodo nella verifica di resistenza a trazione.
AreaV2	Area resistente del nodo in direzione 2 ($A_{i2}=b_{j2}*h_{jc2}$).
AreaV3	Area resistente del nodo in direzione 3 ($A_{i3}=b_{j3}*h_{jc3}$).
Rif. comb.	Combinazione (direzione) di riferimento nella verifica di trazione.

Per le verifiche agli S.L. delle travi è presente una tabella con i simboli di seguito descritti:

rei le verillere	agii 5.L. delle travi e presente una tabella con i simboli di seguito descritti.							
M_T Z P P	Numero della travata (T), quota media (Z), n° pilastrata iniziale (P) e finale (P) (nodo in assenza di pilastrata)							
Trave	numero identificativo dell'elemento D2							
Note	Codici identificativi sezione (s) e materiale (m) trave; sono inoltre presenti le sigle relative all'esito delle verifiche effettuate appresso descritte							
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo							
Af inf.	Area di armatura longitudinale posta all'intradosso							
Af sup	Area di armatura longitudinale posta all'estradosso							
Af long.	Area complessiva armatura longitudinale							
x/d	rapporto tra posizione dell'asse neutro e altezza utile							
V N/M	Verifica a pressoflessione rapporto Ed/Rd: valore minore o uguale a 1 per verifica positiva							
Staffe	Dati tratto di staffatura oggetto di verifica, nello specifico: numero delle braccia, diametro, passo, lunghezza L tratto							
V V/T cls	Verifica a taglio/torsione con rapporto Ved/Vrd: valore minore o uguale a 1 per verifica positiva							
Rif. cmb.	Riferimento combinazioni da cui si generano le verifiche più gravose per la trave							

Per le verifiche alla G.R. delle travi è presente una tabella con i simboli di seguito descritti:

Trave	numero identificativo dell'elemento D2 trave
M negativo i (f)	Valore del momento resistente negativo all' estremità iniziale i (finale f) della trave
M positivo i (f)	Valore del momento resistente positivo all' estremità iniziale i (finale f) della trave
Luce per V	Luce di calcolo per la definizione del taglio (generato dai momenti resistenti)
V M-i M+f	Taglio generato dai momenti resistenti negativo i e positivo f
V M+i M-f	Taglio generato dai momenti resistenti positivo i e negativo f
VEd, min	Valore di taglio minimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:							
C51D_SR1A							
Rev.	Rev. Data						
A Ottobre 2020							
Pag. 65 di 74							

VEd, max	Valore di taglio massimo per verifica condizioni p.to 7.4.4.1.1 armatura diagonale (solo per CD "A")
Vr1	Valore di taglio come da formula 7.4.1 per armatura diagonale (solo per CD "A")
As	Area singolo ordine armature diagonali come da formula 7.4.2 (solo per CD "A")

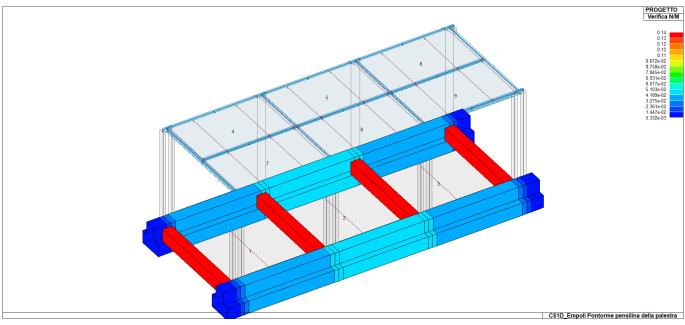
Per le verifiche a taglio ciclico di travi e pilastri esistenti è presente una tabella con i simboli di seguito descritti:

Trave/Pilastro	Numero identificativo dell'elemento D2 trave/pilastro							
V. SLV	Codice relativo all'esito delle verifiche							
Nodo	Numero identificativo del nodo di verifica							
Ver. VC	Fattore di sicurezza nei confronti della verifica a taglio ciclico (verificato se < 1.00)							
Direz.	Direzione di verifica							
N fr	Valore di sforzo normale calcolato con fattore di comportamento fragile							
V fr	Valore di taglio calcolato con fattore di comportamento fragile							
M fr	Valore di momento calcolato con fattore di comportamento fragile							
N dutt	Valore di sforzo normale calcolato con fattore di comportamento duttile							
LV	Lunghezza di taglio							
Mud,pl	Parte plastica della domanda di duttilità							
V cic	Resistenza a taglio in condizioni cicliche (C8.7.2.8)							
Cmb	Riferimento combinazioni da cui si generano le verifiche più gravose							

Per le verifiche alle T.A. di pilastri e travi è presente una tabella con i simboli di seguito descritti:

er ie verifiche	alle T.A. di pilastri e travi e presente una tabella con i simboli di seguito descritti:									
$M_P X Y$	Numero della pilastrata (P) e posizione in pianta (X,Y)									
M_TZPP	Numero della travata, quota media pilastrata iniziale e finale (nodo in assenza di pilastrata)									
Pilas. o Trave	numero identificativo dell'elemento D2									
Note Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m); nella terza riga viene riport										
	snellezze in direzione 2-2 e 3-3									
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali									
Quota	Ascissa del punto di verifica									
%Af	Percentuale di area di armatura rispetto a quella di calcestruzzo									
Armat. long.	Numero e diametro dei ferri di armatura longitudinale: ferri di vertice + ferri di lato (come da fig. precedente)									
Af inf.	Area di armatura longitudinale posta all'intradosso della trave									
Af sup	Area di armatura longitudinale posta all'estradosso della trave									
Sc max	Massima tensione di compressione del calcestruzzo									
Sc med	Massima tensione media di compressione del calcestruzzo									
Sf max	Tensione massima nell'acciaio									
staffe	Vengono riportati i dati del tratto di staffatura in cui cade la sezione di verifica; in particolare: numero dei bracci,									
	diametro, passo, lunghezza tratto									
Tau max	Tensione massima tangenziale nel cls									
Rif. comb	Combinazioni in cui si generano i seguenti valori di tensione:									
	Sc max, Sc med, Sf max, Tau max									
AfV	area dell'armatura atta ad assorbire le azioni di taglio									
AfT	area dell'armatura atta ad assorbire le azioni di torsione									
Scorr. P	Scorrimento dei piegati									
Af long.	Area del ferro longitudinale aggiuntivo per assorbire la torsione									

							M_T= 8	Z=0.0	P=1	P=15	
Trave	Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe Rif. cmb
		cm				_					L=cm
87	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	3.01e-04	5.16e-04	1.18e-05	2d8/15 L=40 41,18,1
5	s=3,m=1	40.0	0.26	12.7	10.2	0.0	0.11	5.33e-03	0.01	0.02	2d8/15 L=40 4,4,4
59	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.01	0.05	0.04	2d8/15 L=14 39,19,39
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.02	0.05	0.05	2d8/15 L=14 39,19,39
73	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.02	0.04	0.03	2d8/15 L=14 39,27,43
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.02	0.04	0.03	2d8/15 L=14 39,27,43
60	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=73 39,22,22
5	s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.02	0.02	0.01	2d8/15 L=125 43,19,39
		272.0	0.26	12.7	10.2	0.0	0.11	0.04	0.02	0.03	2d8/15 L=73 4,27,11
61	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,19,39
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,19,39
74	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,30,46
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,30,46
62	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.03	0.02	2d8/15 L=73 43,22,42
5	s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=125 4,43,43
		272.0	0.26	12.7	10.2	0.0	0.11	0.04	0.03	0.02	2d8/15 L=73 39,27,43
63	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,19,39
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,19,39
75	ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,30,46
5	s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,30,46

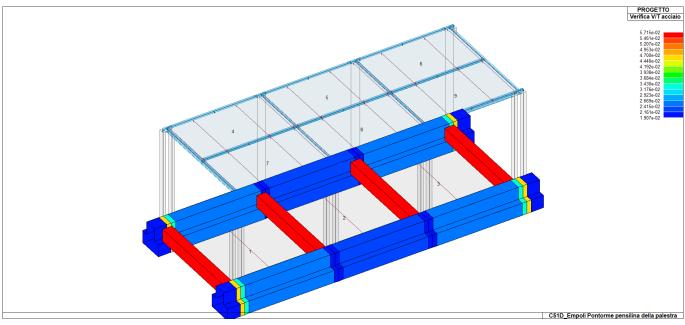

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

64 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.02	0.03	2d8/15 L=73 4,22,11
s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=125 39,30,46
	272.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=73 43,27,27
65 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.03	0.04	0.03	2d8/15 L=14 43,22,42
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.02	0.04	0.03	2d8/15 L=14 43,22,42
76 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.02	0.05	0.05	2d8/15 L=14 43,30,46
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.01	0.05	0.04	2d8/15 L=14 43,30,46
85 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	5.33e-03	0.01	0.02	2d8/15 L=40 4,4,4
s=3,m=1	40.0	0.26	12.7	10.2	0.0	0.11	3.01e-04	5.16e-04	1.18e-05	2d8/15 L=40 46,27,1
						И_T= 9	Z=0.0	P=2	P=16	
Trave Note	Pos.	%Af	Af inf.		Af long.	x/d	V N/M		V V/T acc	Staffe Rif. cmb
81 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	3.01e-04	5.16e-04	1.18e-05	2d8/15 L=40 31,18,1
s=3,m=1	40.0	0.26	12.7	10.2	0.0	0.11	5.33e-03	0.01	0.02	2d8/15 L=40 4,4,4
66 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.01	0.05	0.04	2d8/15 L=14 31,15,31
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.02	0.06	0.05	2d8/15 L=14 31,15,31
77 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.02	0.03	0.03	2d8/15 L=14 31,23,35
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.02	0.03	0.03	2d8/15 L=14 31,23,35
67 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=73 31,18,18
s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.02	0.02	0.01	2d8/15 L=125 35,15,31
	272.0	0.26	12.7	10.2	0.0	0.11	0.04	0.02	0.03	2d8/15 L=73 4,23,11
68 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,15,31
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,15,31
78 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,26,38
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,26,38
69 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.03	0.02	2d8/15 L=73 35,18,34
s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=125 4,34,31
70	272.0	0.26	12.7	10.2	0.0	0.11	0.04	0.03	0.02	2d8/15 L=73 31,23,35
70 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,15,31
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.04	0.02	2d8/15 L=14 4,15,31
79 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,26,38
s=3,m=1	14.0	0.26	12.7	10.2	0.0	0.11	0.04	0.05	0.02	2d8/15 L=14 4,26,38
71 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.04	0.02	0.03	2d8/15 L=73 4,18,11
s=3,m=1	136.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=125 31,26,38
70 -11-	272.0	0.26	12.7	10.2	0.0	0.11	0.03	0.02	0.01	2d8/15 L=73 35,23,23
72 ok,ok	0.0	0.26	12.7	10.2	0.0	0.11	0.03	0.03	0.03	2d8/15 L=14 35,18,34
s=3,m=1	14.0	0.26	12.7 12.7	10.2	0.0	0.11	0.02	0.03	0.03	2d8/15 L=14 35,18,34
80 ok,ok s=3,m=1	0.0 14.0	0.26	12.7	10.2 10.2	0.0	0.11 0.11	0.02 0.01	0.06 0.05	0.05 0.04	2d8/15 L=14 35,26,38
86 ok,ok	0.0	0.26 0.26	12.7	10.2	0.0 0.0	0.11	5.33e-03	0.05	0.04	2d8/15 L=14 35,26,38 2d8/15 L=40 4,4,4
s=3,m=1	40.0	0.26	12.7	10.2	0.0	0.11	3.01e-04	5.16e-04	1.18e-05	2d8/15 L=40 4,4,4 2d8/15 L=40 36,27,1
3–3,111–1	40.0	0.20	12.7	10.2		_T= 10	Z=0.0	N=55	N=59	200/13 L=40 30,27,1
Trave Note	Pos.	%Af	Af inf.	Af cun	Af long.	_1 _10 x/d	V N/M		V V/T acc	Staffe Rif. cmb
82 ok,ok	0.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 21,18,21
s=4,m=1	177.5	0.51	6.2	6.2	0.0	0.15	0.07	0.03	0.03	2d8/20 L=255 3,15,21
5-4,III-1	355.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 15,15,20
	000.0	0.01	0.2	0.2		_T= 11	Z=0.0	N=56	N=60	240, 10 2=00 10, 10,20
Trave Note	Pos.	%Af	Af inf.	Af. sup		_ · _ · · · x/d	V N/M		V V/T acc	Staffe Rif. cmb
83 ok,ok	0.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 30,25,30
s=4,m=1	177.5	0.51	6.2	6.2	0.0	0.15	0.07	0.03	0.03	2d8/20 L=255 3,25,27
,	355.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 24,24,27
						T= 12	Z=0.0	N=57	N=61	
Trave Note	Pos.	%Af	Af inf.	Af. sup	Af long.	_	V N/M	V V/T cls		Staffe Rif. cmb
84 ok,ok	0.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 30,25,30
s=4,m=1	177.5	0.51	6.2	6.2	0.0	0.15	0.07	0.03	0.04	2d8/20 L=255 1,25,27
,	355.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 24,24,27
					M	_T= 13	Z=0.0	N=54	N=58	
Trave Note	Pos.	%Af	Af inf.	Af. sup	Af long.	x/d	V N/M	V V/T cls	V V/T acc	Staffe Rif. cmb
88 ok,ok	0.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 21,18,21
s=4,m=1	177.5	0.51	6.2	6.2	0.0	0.15	0.07	0.03	0.04	2d8/20 L=255 1,15,21
	355.0	0.51	6.2	6.2	0.0	0.15	0.14	0.05	0.05	2d8/15 L=50 15,15,20
Trave		%Af		Af. sup		x/d		V V/T cls		
		0.51	12.72	10.18	0.0	0.15	0.14	0.06	0.05	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 67 di 74					



71_PRO_CA_TRV_VER_VRCD

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 68 di 74						

71_PRO_CA_TRV_VER_VRSD

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:						
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 69 di 74						

STATI LIMITE D' ESERCIZIO LEGENDA TABELLA STATI LIMITE D' ESERCIZIO

In tabella vengono riportati i valori di interesse per il controllo degli stati limite d'esercizio.

In particolare vengono riportati, in relazione al tipo di elemento strutturale, i risultati relativi alle tre categorie di combinazione considerate:

- Combinazioni rare
- Combinazioni frequenti
- Combinazioni quasi permanenti.

I valori di interesse sono i seguenti:

i vaion ai int	eresse sono i seguenti.				
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni rare				
	[normalizzato a 1]				
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare [normalizzato				
	a 1]				
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in combinazioni quasi				
	permanenti [normalizzato a 1]				
wR	apertura caratteristica delle fessure in combinazioni rare [mm]				
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]				
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]				
dR	massima deformazione in combinazioni rare				
dF	massima deformazione in combinazioni frequenti				
dP	massima deformazione in combinazioni quasi permanenti				

Per ognuno dei nove valori soprariportati viene indicata (Rif.cmb) la combinazione in cui si è verificato.

In relazione al tipo di elemento strutturale i valori sono selezionati nel modo seguente:

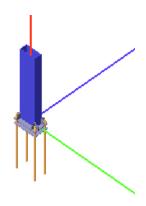
pilastri	rRfck	rRfyk	rPfck	per sezioni significative	
travi	rRfck	rRfyk rPfck		per sezioni significative	
	wR	wF	wP	per sezioni significative	
	dR	dF	dP	massimi in campata	
setti e gusci	rRfck	rRfyk rPfck		massimi nei nodi dell'elemento	
_	wR	wF	wP	massimi nei nodi dell'elemento	

Si precisa che i valori di massima deformazione per travi sono riferiti al piano verticale (piano locale 1-2 con momenti flettenti 3-3).

Trave	Pos.	rRfck	rRfyk	rPfck	Rif. cmb	wR	wF	wP	Rif. cmb	dR	dF	dP	Rif. cmb
	cm					mm	mm	mm		cm	cm	cm	
59	0.0	1.96e-03	4.25e-03	2.21e-03	84,84,94	0.0	0.0	0.0	0,0,0	4.87e-04	3.85e-04	3.57e-04	84,89,94
	14.0	3.63e-03	7.84e-03	4.05e-03	84,84,94	0.0	0.0	0.0	0,0,0				
60	0.0	4.31e-03	9.35e-03	4.54e-03	84,84,94	0.0	0.0	0.0	0,0,0	0.02	0.02	0.02	84,89,94
	136.0	5.94e-03	0.01	5.21e-03	83,83,94	0.0	0.0	0.0	0,0,0				
	272.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
61	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-7.02e-04	-5.56e-04	-5.19e-04	84,89,94
	14.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0				
62	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-2.56e-03	-2.00e-03	-1.85e-03	84,89,94
	136.0	9.25e-03	0.02	8.75e-03	84,84,94	0.0	0.0	0.0	0,0,0				
	272.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
63	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-6.20e-04	-4.89e-04	-4.56e-04	84,89,94
	14.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
64	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	0.02	0.02	0.02	84,89,94
		5.94e-03		5.21e-03		0.0	0.0	0.0	0,0,0				
	272.0	4.31e-03	9.35e-03	4.54e-03	84,84,94	0.0	0.0	0.0	0,0,0				
65	0.0	4.44e-03	9.55e-03	4.66e-03	84,84,94	0.0	0.0	0.0	0,0,0	4.81e-04	3.80e-04	3.52e-04	84,89,94
	14.0	3.64e-03	7.84e-03	4.06e-03	84,84,94	0.0	0.0	0.0	0,0,0				
66	0.0	1.96e-03	4.25e-03	2.21e-03	84,84,94	0.0	0.0	0.0	0,0,0	4.87e-04	3.85e-04	3.57e-04	84,89,94
	14.0	3.63e-03	7.84e-03	4.05e-03	84,84,94	0.0	0.0	0.0	0,0,0				
67	0.0	4.31e-03	9.35e-03	4.54e-03	84,84,94	0.0	0.0	0.0	0,0,0	0.02	0.02	0.02	84,89,94
	136.0	5.94e-03	0.01	5.21e-03	83,83,94	0.0	0.0	0.0	0,0,0				
	272.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
68	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-7.02e-04	-5.56e-04	-5.19e-04	84,89,94
	14.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
69	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-2.56e-03	-2.00e-03	-1.85e-03	84,89,94
	136.0	9.25e-03	0.02	8.75e-03	84,84,94	0.0	0.0	0.0	0,0,0				
	272.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				
70	0.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0	-6.20e-04	-4.89e-04	-4.56e-04	84,89,94
	14.0	0.02	0.03	0.02	84,84,94	0.0	0.0	0.0	0,0,0				

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA


71	0.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0	0.02	0.02	0.02	84,89,94
		5.94e-03		5.21e-03		0.0	0.0	0.0	0,0,0				
				4.54e-03	, ,	0.0	0.0	0.0	0,0,0				
72				4.66e-03		0.0	0.0	0.0		4.81e-04	3.80e-04	3.52e-04	84,89,94
				4.06e-03		0.0	0.0	0.0	0,0,0				
73				4.06e-03		0.0	0.0	0.0		4.81e-04	3.80e-04	3.52e-04	84,89,94
				4.66e-03	, ,	0.0	0.0	0.0	0,0,0				
74	0.0	0.02	0.03		84,84,94	0.0	0.0	0.0		-6.20e-04	-4.89e-04	-4.56e-04	84,89,94
	14.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0				
75	0.0	0.02	0.03		84,84,94	0.0	0.0	0.0		-7.02e-04	-5.56e-04	-5.19e-04	84,89,94
	14.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0				
76				4.05e-03		0.0	0.0	0.0		4.87e-04	3.85e-04	3.57e-04	84,89,94
				2.21e-03		0.0	0.0	0.0	0,0,0				
77				4.06e-03		0.0	0.0	0.0		4.81e-04	3.80e-04	3.52e-04	84,89,94
				4.66e-03		0.0	0.0	0.0	0,0,0				
78	0.0	0.02	0.03		84,84,94	0.0	0.0	0.0		-6.20e-04	-4.89e-04	-4.56e-04	84,89,94
	14.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0				
79	0.0	0.02	0.03		84,84,94	0.0	0.0	0.0		-7.02e-04	-5.56e-04	-5.19e-04	84,89,94
	14.0	0.02	0.03		84,84,94	0.0	0.0	0.0	0,0,0				
80				4.05e-03		0.0	0.0	0.0		4.87e-04	3.85e-04	3.57e-04	84,89,94
				2.21e-03		0.0	0.0	0.0	0,0,0				
81				1.55e-06		0.0	0.0	0.0		-4.33e-03	-1.11e-03	-1.03e-03	84,89,94
				2.30e-03	, ,	0.0	0.0	0.0	0,0,0				
82		5.47e-03		7.01e-03		0.0	0.0	0.0	0,0,0	-0.03	-0.03	-0.03	83,89,94
	177.5	0.03	0.06		83,81,94	0.0	0.0	0.0	0,0,0				
		5.47e-03		7.01e-03		0.0	0.0	0.0	0,0,0				
83		5.46e-03		7.00e-03	87,85,94	0.0	0.0	0.0	0,0,0	-0.03	-0.03	-0.03	83,89,94
	177.5	0.03	0.06		83,81,94	0.0	0.0	0.0	0,0,0				
		5.46e-03		7.00e-03		0.0	0.0	0.0	0,0,0				
84		5.28e-03		6.79e-03		0.0	0.0	0.0	0,0,0	-0.03	-0.03	-0.03	81,88,93
	177.5	0.03	0.06		83,81,94	0.0	0.0	0.0	0,0,0				
		5.28e-03		6.79e-03		0.0	0.0	0.0	0,0,0				
85				2.30e-03		0.0	0.0	0.0	0,0,0	-4.33e-03	-1.11e-03	-1.03e-03	84,89,94
				1.55e-06		0.0	0.0	0.0	0,0,0				
86				2.30e-03		0.0	0.0	0.0		-4.33e-03	-1.11e-03	-1.03e-03	84,89,94
	40.0	1.16e-06	2.43e-06	1.55e-06	81,81,93	0.0	0.0	0.0	0,0,0				
87	0.0	1.16e-06	2.43e-06	1.55e-06	81,81,93	0.0	0.0	0.0	0,0,0	-4.33e-03	-1.11e-03	-1.03e-03	84,89,94
	40.0	2.04e-03	4.38e-03	2.30e-03	84,84,94	0.0	0.0	0.0	0,0,0				
88	0.0	5.28e-03	0.01	6.79e-03	87,85,94	0.0	0.0	0.0	0,0,0	-0.03	-0.03	-0.03	81,88,93
	177.5	0.03	0.06	0.04	83,81,94	0.0	0.0	0.0	0,0,0				
	355.0	5.28e-03	0.01	6.79e-03	87,85,94	0.0	0.0	0.0	0,0,0				
Trave		rRfck	rRfyk	rPfck		wR	wF	wP		dR	dF	dP	
			-							-0.03	-0.03	-0.03	
		0.03	0.06	0.04		0.0	0.0	0.0		0.02	0.02	0.02	

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Docume	Documento:					
C51D_SR1A						
Rev.	Data					
Α	Ottobre 2020					
Pag. 71 di 74						

Verifica secondo il D.M. 17/01/2018 dei nodi: 1, 11

Coefficienti di sicurezza utilizzati

 $\gamma_{M0} = 1.05$ $\gamma_{M1} = 1.10$

 $\gamma_{M2} = 1.25$

<u>Colonna</u>

Tipo di profilo: T.Re 80x180x4x4

Materiale: Acciaio S355 $f_y = 355 \text{ N/mm}^2$ $f_t = 510 \text{ N/mm}^2$ $\gamma_{ov} = 1.25$

Classe sezione: 1

Flangia:

Materiale: Acciaio S355 $f_y = 355 \text{ N/mm}^2$ $f_t = 510 \text{ N/mm}^2$ $\gamma_{ov} = 1.25$

Dimensioni (B x H x Sp): 162.8 x 262.8 x 8.0 mm

Spessore nervature verticali: 4.0 mm Spessore nervature orizzontali: 4.0 mm

Bullonature:

Viti cl. 8.8 Dadi 8 o 10 ($f_{yb} = 640 \text{ N/mm}^2$, $f_{tb} = 800 \text{ N/mm}^2$)

Diametro gambo \emptyset = 16 mm A_{res} = 156.8 mm² (ridotta per filettatura)

Diametro dado/testa $d_m = 24 \text{ mm}$ Diametro foro $\emptyset_0 = 17 \text{ mm}$

Saldature:

Materiale: Acciaio S355 $f_y = 355 \text{ N/mm}^2$ $f_t = 510 \text{ N/mm}^2$ $\beta_1 = 0.70$ $\beta_2 = 0.85$

Spessore cordoni d'angolo s_c = 4 mm

Sollecitazioni:

Nodo.CMB	V2 [N]	V3 [N]	N [N]	M2 [N mm]	M3 [N mm]	T [N mm]
1.21	-1904.2	583.4	5288.4	-1071000.0	6466000.0	36928.0
1.46	-125.5	-1501.8	-13530.0	2714000.0	404529.0	59620.0
11.21	-1883.5	591.6	-8459.8	-1081000.0	6395000.0	-113456.0
11.41	-787.0	1486.0	-15717.7	-2683000.0	2659000.0	-74065.0

Calcolo resistenze

Resistenza a trazione dei bulloni	$F_{tb,Rd} = 0.9 \cdot f_{tb} \cdot A_{res} / \gamma_{M2} =$	90333.1 N
Resistenza a punzonamento flangia	$B_{pf,Rd} = 0.6 \bullet \pi \bullet d_m \bullet t_f \bullet f_{tk} / \gamma_{M2} =$	147659.9 N

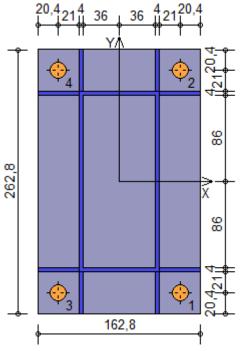
 $\begin{array}{lll} \text{Bull.} & \text{F}_{\text{f,Rd}} \left[N \right] & \text{F}_{\text{t,Rd}} \left[N \right] \\ 1 & 21329.0 & 21329.0 \end{array}$

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 72 di 74					

2	21329.0	21329.0
3	21329.0	21329.0
4	21329.0	21329.0


Legenda

 $F_{f,Rd} = M_{res,m} / (B_m \cdot R_m)$ resistenza a flessione flangia

 $F_{t,Rd} = min [F_{tb,Rd} , B_{pf,Rd} , F_{f,Rd}]$ resistenza a trazione di progetto

Resistenza a	taglio dei bulloni	$F_{vb,Rd}$	60222.1 N		
Bull.	F _{bf,x,Rd} [N]	$F_{v,x,Rd}[N]$	F _{bf,y,Rd} [N]	$F_{v,y,Rd}$ [N]	
1	34676.7	34676.7	34676.7	34676.7	
2	34676.7	34676.7	34676.7	34676.7	
3	34676.7	34676.7	34676.7	34676.7	
4	34676.7	34676.7	34676.7	34676.7	
Laganda					

$$\begin{split} F_{bf,x,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione x} \\ F_{v,x,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,x,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione x} \\ F_{bf,y,Rd} &= k \bullet \alpha \bullet f_{tk} \bullet \varnothing \bullet t_f \ / \ \gamma_{M2} \ \ \text{resistenza a rifollamento flangia in direzione y} \\ F_{v,y,Rd} &= min \ [\ F_{vb,Rd} \ , \ F_{bf,y,Rd} \] \ \ \text{resistenza a taglio di progetto in direzione y} \end{split}$$

Verifiche sui bulloni

<u>1-Tagli</u>	o e trazion	<u>ne</u> (Nodo n. 1	1, CMB n. 21)						
Bull.	X [mm]	Y [mm]	F _{v,Ed} [N]	F _{v,Rd} [N]	F _{t,Ed} [N	I]	$F_{t,Rd}$ [N]	FV_1	VER
1	61.00	-111.00	552.5	34676.7	13416.9	9	21329.0	0.465251	Ok
2	61.00	111.00	517.7	34676.7	0.0	0	21329.0	0.014929	Ok
3	-61.00	-111.00	488.3	34676.7	19942.2	2	21329.0	0.681925	Ok
4	-61.00	111.00	448.5	34676.7	0.0	0	21329.0	0.012934	Ok
2-Trazi	ione (Noc	do n. 1, CMB ı	n. 21)						
Bull.	X [mm]	Y [mm]	$F_{t,Ed}[N]$	$F_{t,Rd}[N]$	FV_2	VER			
1	61.00	-111.00	13416.9	21329.0	0.629044	Ok			
2	61.00	111.00	0.0	21329.0	0.000000	Ok			
3	-61.00	-111.00	19942.2	21329.0	0.934981	Ok			
4	-61.00	111.00	0.0	21329.0	0.000000	Ok			
Legend	<u>da</u>								

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Documento:					
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Pag. 73 di 74					

F_{v,Ed} forza di taglio agente sul bullone

F_{v,Rd} resistenza a taglio di progetto del bullone

F_{t,Ed} forza di trazione agente sul bullone

Ft,Rd resistenza a trazione di progetto del bullone

 $FV_1 = F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 \cdot F_{t,Rd})$

 $FV_2 = F_{t,Ed} / F_{t,Rd}$ $VER \rightarrow FV_i \leq 1$

Verifiche sulle saldature profilo-flangia (versione beta)

Si considera la sezione di gola (avente altezza $a = s_c / 2^{0.5} = 2.828$) in posizione ribaltata: vengono considerate positive le tensioni normali di trazione e le tensioni tangenziali agenti verso destra e verso il basso. Tutte le tensioni sono espresse in N/mm².

sono espresse in in/min					
Verifica formula (4.2.84) (Nodo n. 11, CMB n. 41)					
Cordoni	n_\perp	t_{\perp}	$ au_{ }$	FV ₁	VER_1
Nerv. vert. lato inferiore zona destra esterno	-11.25	0.00	-0.42	11.26	Ok
Nerv. vert. lato inferiore zona destra interno	-8.49	0.00	-0.42	8.50	Ok
Nerv. vert. lato inferiore zona sinistra interno	23.59	0.00	-0.42	23.59	Ok
Nerv. vert. lato inferiore zona sinistra esterno	26.34	0.00	-0.42	26.35	Ok
Nerv. orizz. lato destro zona inferiore esterno	-27.68	0.00	1.14	27.70	Ok
Profilo lato inferiore	21.33	0.00	1.14	21.36	Ok
Nerv. orizz. lato sinistro zona inferiore esterno	38.04	0.00	1.14	38.06	Ok
Profilo lato destro	-31.68	0.00	-0.42	31.68	Ok
Profilo lato sinistro	21.74	0.00	-0.42	21.75	Ok
Nerv. orizz. lato destro zona inferiore interno	-28.43	0.00	1.14	28.46	Ok
Nerv. orizz. lato sinistro zona inferiore interno	37.28	0.00	1.14	37.30	Ok
Nerv. orizz. lato destro zona superiore interno	-47.22	0.00	1.14	47.24	Ok
Nerv. orizz. lato sinistro zona superiore interno	18.50	0.00	1.14	18.53	Ok
Nerv. orizz. lato destro zona superiore esterno	-47.98	0.00	1.14	47.99	Ok
Profilo lato superiore	-31.27	0.00	1.14	31.29	Ok
Nerv. orizz. lato sinistro zona superiore esterno	17.74	0.00	1.14	17.77	Ok
Nerv. vert. lato superiore zona destra esterno	-36.28	0.00	-0.42	36.28	Ok
Nerv. vert. lato superiore zona destra interno	-33.52	0.00	-0.42	33.53	Ok
Nerv. vert. lato superiore zona sinistra interno	-5.60	0.00	-0.42	5.62	Ok
Nerv. vert. lato superiore zona sinistra esterno	-2.84	0.00	-0.42	2.88	Ok
Verifica formula (4.2.85) (Nodo n. 11, CMB n. 41)					
Cordoni	n ₁	t _l	$ au_{ }$	FV_2	VER ₂
Nerv. vert. lato inferiore zona destra esterno	-11.25	0.00	-0.42	11.25	Ok
Nerv. vert. lato inferiore zona destra interno	-8.49	0.00	-0.42	8.49	Ok
Nerv. vert. lato inferiore zona sinistra interno	23.59	0.00	-0.42	23.59	Ok
Nerv. vert. lato inferiore zona sinistra esterno	26.34	0.00	-0.42	26.34	Ok
Nerv. orizz. lato destro zona inferiore esterno	-27.68	0.00	1.14	27.68	Ok
Profilo lato inferiore	21.33	0.00	1.14	21.33	Ok
Nerv. orizz. lato sinistro zona inferiore esterno	38.04	0.00	1.14	38.04	Ok
Profilo lato destro	-31.68	0.00	-0.42	31.68	Ok
Profilo lato sinistro	21.74	0.00	-0.42	21.74	Ok
Nerv. orizz. lato destro zona inferiore interno	-28.43	0.00	1.14	28.43	Ok
Nerv. orizz. lato sinistro zona inferiore interno	37.28	0.00	1.14	37.28	Ok
Nerv. orizz. lato destro zona superiore interno	-47.22	0.00	1.14	47.22	Ok
Nerv. orizz. lato sinistro zona superiore interno	18.50	0.00	1.14	18.50	Ok
Nerv. orizz. lato destro zona superiore esterno	-47.98	0.00	1.14	47.98	Ok
Profilo lato superiore	-31.27	0.00	1.14	31.27	Ok
Nerv. orizz. lato sinistro zona superiore esterno	17.74	0.00	1.14	17.74	Ok
Nerv. vert. lato superiore zona destra esterno	-36.28	0.00	-0.42	36.28	Ok
Nerv. vert. lato superiore zona destra interno	-33.52	0.00	-0.42	33.52	Ok
Nerv. vert. lato superiore zona sinistra interno	-5.60	0.00	-0.42	5.60	Ok
Nerv. vert. lato superiore zona sinistra esterno	-2.84	0.00	-0.42	2.84	Ok

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

RELAZIONE DI CALCOLO DELLE STRUTTURE PENSILINA

Docume	nto:				
C51D_SR1A					
Rev.	Data				
Α	Ottobre 2020				
Р	ag. 74 di 74				

Legenda

n⊥ tensione normale perpendicolare all'asse del cordone

t⊥ tensione tangenziale perpendicolare all'asse del cordone

τ_{||} tensione tangenziale parallela all'asse del cordone

$$FV_1 = (n_{\perp}^2 + t_{\perp}^2 + \tau_{\parallel}^2)^{0.5}$$

$$FV_2 = |n_1| + |t_1|$$

$$VER_i \rightarrow FV_i \leq \beta_i \cdot f_{yk}$$
 $(\beta_1 \cdot f_{yk} = 248.50 \text{ N/mm}^2)$

$$\beta_2 \cdot f_{yk} = 301.75 \text{ N/mm}^2$$

Verifiche a flessione piastra in zona compressa

Sezione parallela a X a filo della colonna (Nodo n. 11, CMB n. 21)

Pressione media a bordo piastra $p_{med} = 4,23 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 688,43 \text{ N/mm}$ Lunghezza sbalzo $L_s = 41,4 \text{ mm}$

Modulo di resistenza minimo $W_{min} = 11376,2 \text{ mm}^3$

Momento resistente $M_{p,Rd} = 3846247,0 \text{ N mm}$ Momento massimo $M_{p,Ed} = 589973,2 \text{ N mm}$

 $M_{p,Ed} / M_{p,Rd} = 0,153389$ Ok

Sezione parallela a Y a filo della colonna (Nodo n. 1, CMB n. 46)

Pressione media a bordo piastra $p_{med} = 3,32 \text{ N/mm}^2$ Carico lineare sbalzo $q_{lin} = 871,30 \text{ N/mm}$ Lunghezza sbalzo $L_s = 41,4 \text{ mm}$

Modulo di resistenza minimo W_{min} = 11806,1 mm³

 $\begin{array}{ll} \text{Momento resistente} & \qquad M_{p,Rd} = \qquad 3991580,0 \text{ N mm} \\ \text{Momento massimo} & \qquad M_{p,Ed} = \qquad 746682,7 \text{ N mm} \end{array}$

 $M_{p,Ed} / M_{p,Rd} = 0,187064$ Ok

Verifica del momento di progetto del giunto (Nodo n. 1, CMB n. 21)

Momento resistente del giunto $M_{j,Rd} = 8951156.0 \text{ N mm}$ Momento di progetto $M_{j,Ed} = 6988682.0 \text{ N mm}$

 $M_{i,Ed} / M_{i,Rd} = 0.780757$ Ok

Ancoraggio

Tirafondi ad aderenza

Lunghezza tirafondi $L_t = 600 \text{ mm}$

Lunghezza minima tirafondi: 40 diametri (640 mm)

Calcestruzzo

Resistenza cubica caratteristica a compressione Resistenza cilindrica caratteristica a compressione	$R_{ck} = f_{ck} = 0.83 \cdot R_{ck} =$	30.00 N/mm ² 24.90 N/mm ²
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{C} =$	14.11 N/mm ²
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 \cdot 0.30 \cdot f_{ck}^{2/3} =$	1.79 N/mm ²
Resistenza tangenziale di aderenza di calcolo	$f_{bd} = 2.25 \cdot n_1 \cdot n_2 \cdot f_{ctk} / \gamma_C =$	2.69 N/mm ²

Compressione massima calcestruzzo (Nodo n. 11, CMB n. 21)

 $p_{max} = 5.89 \text{ N/mm}^2 < f_{cd} \text{ Ok}$

Verifica ancoraggio

Si considera la massima resistenza a trazione di progetto dei tirafondi

Trazione di progetto dell'ancoraggio $F_{t,an,Ed} = max [F_{t,Rd}] = 21329.0 N$ Resistenza a trazione per aderenza $F_{t,ad,Rd} = L_t \cdot \pi \cdot \emptyset \cdot f_{bd} = 81008.6 N$

 $F_{t,ad,Rd} > F_{t,an,Ed}$ Ok

REALIZZAZIONE DELLA NUOVA SCUOLA PRIMARIA IN VIA LIGURIA AD EMPOLI

ALLEGATO 1_CORPO A_ANALISI DEI CARICHI

Docume	nto:			
C51D_SR1A				
Rev. Data				
Α	Ottobre 2020			
1	Pag. 1 di 1			

Si riporta di seguito l'analisi dei carichi dei solai del corpo A scuola.

		C51D_E	mpoli Pontorme_Analisi dei caricl	ni				
			Solaio piano terra - ST1					
Carichi permanenti Strutturali			riferimento	L	b	h	P.U.	Peso
Solaio in laterocemento FBM bisap 28+4			scheda tecnica	[m]	[m]	[m]	[kg/m3]	[daN/m2] 340,00
				Totale				340,00
Carichi permanenti non strutturali Compi	iutamente Definiti			L	b	h	P.U.	Peso
Massetto alleggerito di densità 800 Kg/m3			valore medio	[m] 1	[m] 1	[m] 0,10	[kg/m3] 800	[daN/m2] 80,00
								80,00
Carichi permanenti non strutturali				L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato			valore medio			0,010	2300	23
Massetto di allettamento (FASSA SA 500)			scheda tecnica	1	1	0,050	2100	105
Impianto pavimento radiante: strato eps			valore medio	1	1	0,030	25	1
Impianto pavimento radiante: strato 50%bug			valore medio	1	1	0,010	2100	21
Pannelli isolanti termici e acustici in fibra di l	Kenaf (ISOLKENA	F o eq.)	scheda tecnica	1	1	0,010	80	1
Pannelo isolante in XPS da 200 kPa			valore medio	1	1	0,04	65,00	2,60
				Totale				153,15
Valori utilizzati nei calcoli:								
G1 =	420	[daN/m2]						
G2 =	153	[daN/m2]	Categoria azione variabile			Ψ0	Ψ1	Ψ2
Q-S0 Scuole, Uffici	300	[daN/m2]	Categoria C			0,7	0,7	0,6

Carichi permanenti Strutturali	riferimento	L	b	h	P.U.	Peso
Canada Parinanana Carata an	· · · · · · · · · · · · · · · · · · ·	_ [m]	[m]	 [m]	[kg/m3]	[daN/m2]
Solaio in laterocemento FBM bisap 28+4	scheda tecnica	6-4	2.4	2-4	[19,110]	340,00
		Totale				340,0
Carichi permanenti non strutturali Compiutamente Definiti		L	b	h	P.U.	Peso
		[m]	[m]	[m]	[kg/m3]	[daN/m2]
Massetto alleggerito di densità 800 Kg/m3	valore medio	1	1	0,10	800	80,00
						80,0
Carichi permanenti non strutturali		L [m]	b[m]	h [m]	P.U.	Peso
		[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato	valore medio			0,010	2300	23
Massetto di allettamento (FASSA SA 500)	scheda tecnica	1	1	0,050	2100	105
Impianto pavimento radiante: strato eps	valore medio	1	1	0,030	25	1
Impianto pavimento radiante: strato 50%bugne+tubi+ 50%percentuale autilivellante	valore medio	1	1	0,010	2100	21
Pannelli isolanti termici e acustici in fibra di Kenaf (ISOLKENAF o eq.)	scheda tecnica	1	1	0,010	80	1
Pannelo isolante in XPS da 200 kPa	valore medio	1	1	0,04	65,00	2,60
Parete Knauf w115, peso 50 kg/m2 x h=4m = 200 kg/m	scheda tecnica					
D.M 2018 3.1.3 elementi divisori interni g2 < 2 KN/m						80
		Totale				233,1

Categoria azione variabile

Categoria C

Ψ0

0,7

Ψ1

0,7

Ψ2

0,6

G1 =

G2 =

Q-S0 Scuole, Uffici

420

233

300

[daN/m2]

[daN/m2]

[daN/m2]

			Solaio Isotex primo piano SI1					
Carichi permanenti Struttu	urali		riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S30 + 5 cm di	soletta in cls		scheda tecnica	1	1	0,35		438,00
				Totale				438,00
Carichi permanenti non st	trutturali Compiut	amente Definiti		L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Massetto alleggerito di dens	sità 800 kg/m3		valore medio	1	1	0,10	800	80,00
								80,00
Carichi permanenti non st	trutturali			L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato	0		valore medio			0,010	2300,00	23,00
Massetto di allettamento (FA	ASSA SA 500)		scheda tecnica	1	1	0,050	2100	105,00
Impianto pavimento radiante	e: strato eps		valore medio	1	1	0,030	25	0,75
Impianto pavimento radiante	e: strato 50%bugne	e+tubi+ 50%percentuale autilive	ante valore medio	1	1	0,010	2100	21,00
Pannelli isolanti termici e ac	custici in fibra di Ke	naf (ISOLKENAF o eq.)	scheda tecnica	1	1	0,010	80	1
Controsoffitto Celenit Abe 3	5 mm		scheda tecnica					16,00
Incidenza presenza impianti	i		valore medio					10,00
				Carico Totale				176,55
				Sp. Pacc. Arch.		0,210) m	
				Sp. ToT. Str+Arch		0,560) m	
Valori utilizzati nei calco	li:							
G1 =	518,00	[daN/m2]						
G2 =	176,55	[daN/m2]	Categoria azione variabile	е		Ψ0	Ψ1	Ψ2
Q-S1 Scuole, Uffici	300,00	[daN/m2]	Categoria C			0,7	0,7	0,6

			Solaio Isotex primo piano SI1A					
Carichi permanenti Struttu	ırali		riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S30 + 5 cm di	soletta in cls		scheda tecnica	1	1	0,35		438,00
				Totale				438,00
Carichi permanenti non str	rutturali Compiut	amente Definiti		L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Massetto alleggerito di densi	ità 800 kg/m3		valore medio	1	1	0,10	800	80,00
								80,00
Carichi permanenti non str	rutturali			L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato)		valore medio			0,010	2300,00	23,00
Massetto di allettamento (FA	ASSA SA 500)		scheda tecnica	1	1	0,050	2100	105,00
Impianto pavimento radiante	e: strato eps		valore medio	1	1	0,030	25	0,75
Impianto pavimento radiante	e: strato 50%bugne	e+tubi+ 50%percentuale autilivel	nte valore medio	1	1	0,010	2100	21,00
Pannelli isolanti termici e aci	ustici in fibra di Ke	naf (ISOLKENAF o eq.)	scheda tecnica	1	1	0,010	80	1
Controsoffitto Celenit Abe 35	5 mm		scheda tecnica					16,00
Incidenza presenza impianti			valore medio					10,00
Parete Knauf w115, peso 50	$kg/m2 \times h=4m = 7$	186 kg/m	scheda tecnica					
D.M 2018 3.1.3 elementi divi	isori interni g2 < 2	2 KN/m						80,00
				Carico Totale				256,55
				Sp. Pacc. Arch.		0,210) m	
Valori utilizzati nei calcol	ii:			Sp. ToT. Str+Arch		0,560) m	
	···							
G1 =	518,00	[daN/m2]	Catanavia aniana wasishii	•		1110	[114	1110
G2 =	256,55	[daN/m2]	Categoria azione variabil	е		Ψ0	Ψ1	Ψ2
Q-S1 Scuole, Uffici	300,00	[daN/m2]	Categoria C			0,7	0,7	0,6

			Solaio Legno primo piano SI2					
Carichi permanenti Strutto	urali		riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio X-lam abete rosso (I	Hasslacher norica t	timber)	scheda tecnica	1	1	0,14	450	63,00
				Totale				63,00
Carichi permanenti non st	trutturali Compiut	amente Definiti		L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Massetto alleggerito di dens	sità 800 kg/m3		valore medio	1	1	0,10	800	80,00
								80,00
Carichi permanenti non st	trutturali			L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato	0		valore medio			0,010	2300,00	23,00
Massetto di allettamento (Fa	ASSA SA 500)		scheda tecnica	1	1	0,050	2100	105,00
Impianto pavimento radiante	e: strato eps		valore medio	1	1	0,030	25	0,75
Impianto pavimento radiante	e: strato 50%bugne	e+tubi+ 50%percentuale autilive	ante valore medio	1	1	0,010	2100	21,00
Pannelli isolanti termici e ac	custici in fibra di Ke	naf (ISOLKENAF o eq.)	scheda tecnica	1	1	0,010	80	1
Controsoffitto Celenit Abe 3	5 mm		scheda tecnica					16,00
Incidenza presenza impiant	i		valore medio					10,00
				Carico Totale				176,55
				Sp. Pacc. Arch.		0,210) m	
				Sp. ToT. Str+Arch		0,350) m	
Valori utilizzati nei calco	li:							
G1 =	143,00	[daN/m2]						
G2 =	176,55	[daN/m2]	Categoria azione variabil	е		Ψ0	Ψ1	Ψ2
Q-S1 Scuole, Uffici	300,00	[daN/m2]	Categoria C			0,7	0,7	0,6

			Solaio Sbalzo primo piano Sl3					
Carichi permanenti Strutturali			riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio in C.A. da 20cm			scheda tecnica	1	1	0,2	2100	420,00
				Totale				420,00
Carichi permanenti non strutt	urali Compiut	amente Definiti		L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
								0,00
Carichi permanenti non strutt	urali			L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress smaltato			valore medio			0,010	2300,00	23,00
Malta cementizia bicomponente	elastica (Mape	ei Mapelastic o eq.)	valore medio			0,004		6,80
Massetto di allettamento (FASS	A SA 500)		scheda tecnica	1	1	0,050	2100	105,00
Pannelo isolante in XPS da 200) kPa		valore medio	1	1	0,08	65,00	5,20
Membrana impermeabile bitumi	nosa		valore medio	1	1	0,005		5
				Carico Totale				144,50
				Sp. Pacc. Arch.		0,149) m	
				Sp. ToT. Str+Arch		0,349) m	
Valori utilizzati nei calcoli:								
G1 =	420,00	[daN/m2]						
G2 =	144,50	[daN/m2]	Categoria azione variabile			Ψ0	Ψ1	Ψ2
Q-S1a Sbalzo sola manut.	50,00	[daN/m2]	Categoria C			0,7	0,7	0,6

		So	<mark>laio Pianerottolo Scale Esterne primo pia</mark>	no SI4				
Carichi permanenti Str	rutturali		riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S30 + 5 cm	n di soletta in cls		scheda tecnica	1	1	0,35		438,00
				Totale				438,00
Carichi permanenti no	n strutturali Compiut	amente Definiti		L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Massetto alleggerito di d	lensità 800 kg/m3		valore medio	1	1	0,10	800	80,00
								80,00
Carichi permanenti noi	n strutturali			L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Pavimento in gress sma	ltato		valore medio			0,010	2300,00	23,00
Malta cementizia bicomp	oonente elastica (Mape	ei Mapelastic o eq.)	valore medio			0,004		6,80
Massetto di allettamento	(FASSA SA 500)		scheda tecnica	1	1	0,050	2100	105,00
Pannelo isolante in XPS	S da 200 kPa		valore medio	1	1	0,08	65,00	5,20
Membrana impermeabile	e bituminosa		valore medio	1	1	0,005		5
				Carico Totale				144,50
				Sp. Pacc. Arch.		#RIF!	m	
				Sp. ToT. Str+Arch		#RIF!	m	
Valori utilizzati nei ca	iicoii:							
G1 =	518,00	[daN/m2]						
G2 =	144,50	[daN/m2]	Categoria azione variabil	е		Ψ0	Ψ1	Ψ2
Q-S1 Scale	400,00	[daN/m2]	Categoria C			0,7	0,7	0,6

	Solaio Isotex Co	opertura - SC1					
Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S30 + 5 cm di soletta in cls		scheda tecnica	1	1	0,3		438,00
			Totale				438,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
Occasions makelling time Discourled DEFO and				[m]	[m]	[kg/m3]	[daN/m2]
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Barriera al vapore		valore medio			0,005		5,00
Pannello di lana di roccia (Rockwool Durock Energy o eq.)		scheda tecnica			0,160	140	22,40
Struttura in legno per il fissaggio riverclack	Travetti 6x8 i=1,2		0,83	0,06	0,080	500	2,00
Membrana impermeabile bituminosa		valore medio	1	1	0,005		5
Pannelli fotovoltaici		scheda tecnica					12,00
Sistema zavorrato per pannelli fotocoltaici		scheda tecnica					23,00
Controsoffitto Celenit Abe 35 mm		scheda tecnica					16,00
Incidenza presenza impianti		valore medio					10,00
			Totale				99,90

G1 =	438	[daN/m2]				
G2 =	100	[daN/m2]	Categoria azione variabile	Ψ0	Ψ1	Ψ2
Q-S2 Neve	90	[daN/m2]	Categoria Neve a quota < 1000 m s.l.m.	0,5	0,2	0

	Solaio Isotex C	opertura - SC1					
Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S30 + 5 cm di soletta in cls		scheda tecnica	1	1	0,3		438,00
			Totale				438,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
				[m]	[m]	[kg/m3]	[daN/m2]
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Barriera al vapore		valore medio			0,005		5,00
Pannello di lana di roccia (Rockwool Durock Energy	o eq.)	scheda tecnica			0,160	140	22,40
Struttura in legno per il fissaggio riverclack	Travetti 6x8 i=1,2		0,83	0,06	0,080	500	2,00
Membrana impermeabile bituminosa		valore medio	1	1	0,005		5
Controsoffitto Celenit Abe 35 mm		scheda tecnica					16,00
Incidenza presenza impianti		valore medio					10,00
			Totale				64,90

G1 =	438	[daN/m2]				
G2 =	65	[daN/m2]	Categoria azione variabile	Ψ0	Ψ1	Ψ2
Q-S2 Neve	90	[daN/m2]	Categoria Neve a quota < 1000 m s.l.m.	0,5	0,2	0

	Solaio Legno C	opertura - SC2					
Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio X-lam abete rosso (Hasslacher norica timber)		scheda tecnica	1	1	0,14	450	63,00
			Totale				63,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
				[m]	[m]	[kg/m3]	[daN/m2]
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Barriera al vapore		valore medio			0,005		5,00
Pannello di lana di roccia (Rockwool Durock Energy	o eq.)	scheda tecnica			0,160	140	22,40
Struttura in legno per il fissaggio riverclack	Travetti 6x8 i=1,2		0,83	0,06	0,080	500	2,00
Membrana impermeabile bituminosa		valore medio	1	1	0,005		5
Controsoffitto Celenit Abe 35 mm		scheda tecnica					16,00
Incidenza presenza impianti		valore medio					10,00
			Totale				64,90

G1 =	63	[daN/m2]				
G2 =	65	[daN/m2]	Categoria azione variabile	Ψ0	Ψ1	Ψ2
Q-S2 Neve	90	[daN/m2]	Categoria Neve a quota < 1000 m s.l.m.	0,5	0,2	0

	Solaio Isotex C	opertura - SC3					
Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio Isotex S25 + 5 cm di soletta in cls		scheda tecnica	1	1	0,3		376,00
			Totale				376,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
One of the second line time Discounted DEFO and				[m]	[m]	[kg/m3]	[daN/m2]
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Barriera al vapore	T 0 0	valore medio			0,005		5,00
Struttura in legno per il fissaggio riverclack	Travetti 6x6 i=1,2		0,83	0,06	0,060	500	1,50
Struttura su muricci per sostenere copertura (sp. 12cm i=1,20	m)	valore medio				400	30,00
Pannello di OSB		valore medio			0,02	600	12,00
Pannello di lana di roccia (Rockwool Durock Energy o eq.)		scheda tecnica			0,160	140	22,40
Membrana impermeabile bituminosa		valore medio	1	1	0,005		5
Controsoffitto Celenit Abe 35 mm		scheda tecnica					16,00
Incidenza presenza impianti		valore medio					10,00
			Totale				106,40

G1 =	376	[daN/m2]				
G2 =	106	[daN/m2]	Categoria azione variabile	Ψ0	Ψ1	Ψ2
Q-S2 Neve	90	[daN/m2]	Categoria Neve a quota < 1000 m s.l.m.	0,5	0,2	0

	Solaio Sbalzo	Copertura - SC4					
Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2]
Tavolato in legno di Rovere da 3 cm		scheda tecnica	1	1	0,03	690	20,70
			Totale				20,70
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
•				[m]	[m]	[kg/m3]	[daN/m2]
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Barriera al vapore		valore medio			0,005		5,00
Pannello di lana di roccia (Rockwool Durock Energy o eq.)		scheda tecnica			0,080	140	11,20
Struttura in legno per il fissaggio riverclack	Travetti 6x6 i=1,2		0,83	0,06	0,060	500	1,50
Membrana impermeabile bituminosa		valore medio	1	1	0,005		5
Pannello di OSB		valore medio			0,02	600	12,00
			Totale				39,20
Valori utilizzati nei calcoli:							
G1 = 21	[daN/m2]						
G2 = 39	[daN/m2]	Categoria azione varia	bile		Ψ0	Ψ1	Ψ2

Categoria Neve a quota < 1000 m s.l.m.

0,2

0

0,5

Q-S2 Neve

90

[daN/m2]

Carichi permanenti Strutturali		riferimento	L	b	h	P.U.	Peso
			[m]	[m]	[m]	[kg/m3]	[daN/m2
Solaio in C.A. da 20cm		scheda tecnica	1	1	0,2	2100	420,00
			Totale				420,00
Carichi permanenti non strutturali			L	b	h	P.U.	Peso
				[m]	[m]	[kg/m3]	[daN/m2
Copertura metallica tipo Riverclack B550 o eq.		valore medio			0,050		5,00
Membrana alluminata antirombo e feltro anticondensa		valore medio			0,005	210	1,05
Pannello di lana di roccia (Rockwool Durock Energy o eq.)		scheda tecnica			0,060	140	8,40
Struttura in legno per il fissaggio riverclack	Travetti 6x6 i=1,2		0,83	0,06	0,060	500	1,50
Freno al vapore Delta PVG o eq.		valore medio	1	1	0,005		0,15
Lastra isolante in XPS monostrato tipo Stiferene E300 o eq.		valore medio	1	1	0,03	65,00	1,95
			Totale				18,05

G1 =	420	[daN/m2]				
G2 =	18	[daN/m2]	Categoria azione variabile	Ψ0	Ψ1	Ψ2
Q-S2 Neve	90	[daN/m2]	Categoria Neve a quota < 1000 m s.l.m.	0,5	0,2	0

			Solaio esterno - SM1					
Carichi permanenti Strutturali			riferimento	L	b	h	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Solaio in laterocemento FBM bisap 20+4			scheda tecnica			0,24		265,00
				Totale				265,00
Carichi permanenti non strutturali Compiutamente Definiti			L	b	h	P.U.	Peso	
			[m]	[m]	[m]	[kg/m3]	[daN/m2]	
								0,00
Carichi permanenti non strutturali				L [m]	b[m]	h [m]	P.U.	Peso
				[m]	[m]	[m]	[kg/m3]	[daN/m2]
Autobloccante			valore medio			0,100		125
Sabbia			valore medio	1	1	0,140	1500	210
				Totale				335,00
Valori utilizzati nei calcoli:								
G1 =	265	[daN/m2]						
G2 =	335	[daN/m2]	Categoria azione variabile			Ψ0	Ψ1	Ψ2
Q-S0 Scuole, Uffici	300	[daN/m2]	Categoria C			0,7	0,7	0,6