STUDIO DI GEOLOGIA BARSANTI SANL& ASSOCIATI

BARSANTI, SANI & ASSOCIATI via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

Il Geologo:

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DI	$\mathbf{E}\mathbf{L}$
NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI	

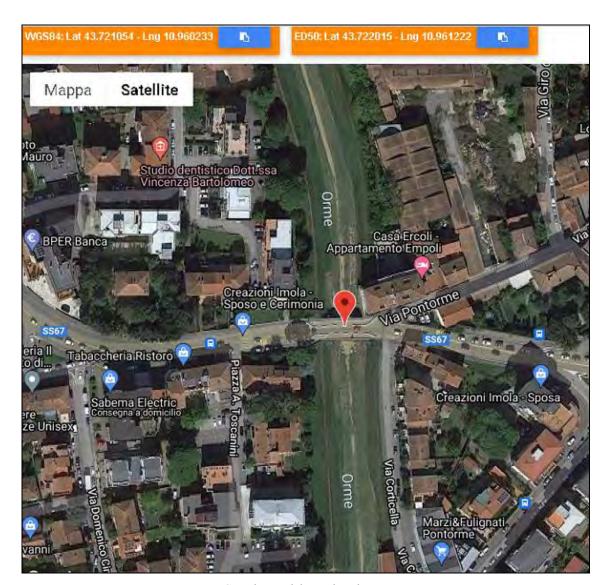
Relazione geologica e sismica Agosto 2021

INDICE

PREMESSA	3
RIFERIMENTI URBANISTICI	5
1. INQUADRAMENTO GEOLOGICO ED IDROGEOLOGICO GENERALE	13
2. CAMPAGNA GEOGNOSTICA E GEOFISICA	16
2.1. Sondaggi a carotaggio continuo	18
2.1.1. Sondaggio verticale S1DH (con downhole)	18
2.1.2. Sondaggi verticali S1e S2 sulle spalle	21
2.1.3.Sondaggi inclinati S3 e S4 sulle spalle	23
2.2. Analisi di laboratorio	24
2.3. Prove penetrometriche DPSH/CPTU	25
2.4. Prospezione downhole	27
2.5. Misure di rumore sismico ambientale a stazione singola	28
2.6. Stratigrafia di dettaglio dei terreni	30
4. PERICOLOSITÀ SISMICA DI BASE E LOCALE	33
4.1. Storia sismica del Comune di Empoli	33
4.2. Pericolosità sismica di base	39
4.3. Verifica del potenziale di liquefazione	41
4.4. Pericolosità sismica locale	44
4.5. Spettro di risposta elastico	45
ALLEGATI	
ALL. N° 1 – LOGS STRATIGRAFICI SONDAGGI	
ALL. N° 2 – CERTIFICATI ANALISI DI LABORATORIO	
ALL. N° 3 – PROVE PENETROMETRICHE DPSH _ CPTU	
ALL. N° 4 – PROSPEZIONI SISMICHE	
ALL. N° 5 – VERIFICA POTENZIALE DI LIQUEFAZIONE	

QUADRO D'INSIEME DELLE INDAGINI

PREMESSA


Per incarico dell'ing. Amedeo Romanini sono state effettuate indagini geologiche e sismiche a supporto della progettazione del nuovo ponte sul T. Orme in Comune di Empoli - FI.

Panoramica del ponte da Sud

La riclassificazione sismica del territorio nazionale intervenuta a seguito dell'emanazione della O.P.C.M. n° 3274/03 del 20 Marzo 2003, pubblicata sulla G.U. n° 105 dell'8 Maggio 2003, e delle successive proroghe, definì il territorio del Comune di Empoli sismico di Zona 2, passato poi a Zona 3s dal DGRT 431/2006. L'ultima e definitiva classificazione risale alla Delibera GRT n° 878 dell'8 Ottobre 2012 che ha confermato la Zona 3.

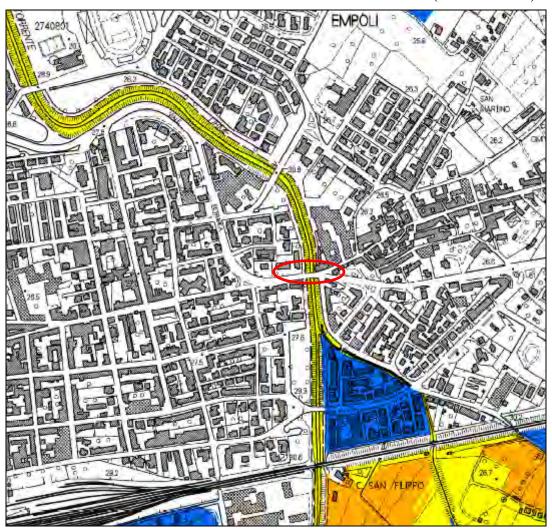
Con Decreto del 17 Gennaio 2018 sono state inoltre approvate le nuove Norme tecniche per le costruzioni, entrate in vigore il 23 Marzo 2018. Come nelle precedenti NTC 2008, la stima della pericolosità sismica, intesa come accelerazione massima orizzontale su suolo rigido, viene definita mediante un approccio "sito dipendente" e non più "zona dipendente": in altre parole, individuate le coordinate del sito interessato dal progetto, questo sarà sempre compreso tra quattro punti della griglia di accelerazioni (Allegato A del D.M. 14 Gennaio 2008), e, tramite media pesata, ad esso competerà un valore specifico di accelerazione, che dipenderà anche dalla tipologia della costruzione (vita di riferimento Vr) e dal tipo di verifica progettuale (Stati Limite di Esercizio SLO e SLD; Stati limite Ultimi SLV e SLC). Secondo NTC 2018 la struttura in progetto ricade in Classe d'uso III, con coefficiente d'uso cu = 1,5, vita nominale = 50 anni e conseguente vita di riferimento Vr = 75 anni.

Coordinate del sito di indagine

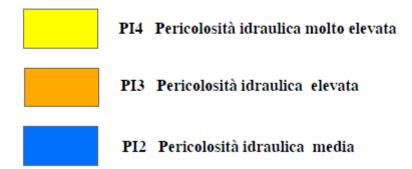
Su richiesta dell'Amministrazione Comunale di Empoli è stato aggiunto alla precedente ns. relazione del maggio 2021, lo studio idraulico specifico del Torrente Orme realizzato a supporto della Variante 2019 al RU per interventi puntuali.

Il presente rapporto, redatto a norma del D.M. 17 Gennaio 2018 e delle "Linee la classificazione e gestione del rischio, la valutazione della sicurezza ed il guida per monitoraggio dei ponti esistenti - 2020", illustra la metodologia delle indagini eseguite, l'elaborazione dei dati ed i risultati conseguiti.

RIFERIMENTI URBANISTICI

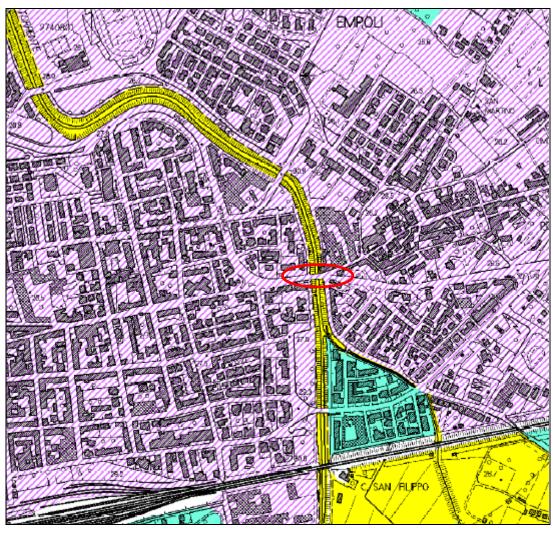

Il ponte in studio, secondo gli estratti in scala 1:10.000 desunti dalla cartografia allegata al PS ed RU del Comune di Empoli, ricade nelle seguenti Classi di Pericolosità.

PERICOLOSITÀ GEOLOGICA: G2÷G3 (media – elevata)



LEGENDA:	
G1 PERICOLOSITA' GEOLOGICA BASSA	Arte in cui i processi geomorfologici e le caratteristiche lifologiche, glaciturali non castituscono fattori predisponenti al verificaris di processi morfolevolutivi.
G2 PERICOLOSITA' GEOLOGICA MEDIA	Aree in oui sono presenti fenomoni francsi inattivi e stabilizzati (naturalmente o artificialmente); aree con elementi geomorfologici, ittologici e giaciturali dafla cui valutazione rastita una bassa propensione al diseasto; corpi detritici au versanti con pendenze interiori al 20%.
G3 PERICOLOSITA' GEOLOGICA ELEVATA	Aree in cui sono presenti fenomeni quiescenti; aree con indizi di inelatilità connessi alla giochura, all'aselvinti, all'a titologia, alla presenza di acque superficiali e sotterranee, nonche a processi di degrado i caraltere antipopo; aree interessate da subsidenza; aree caratturizzate da terreni con scaderni caratturistiche geotecniche; corpi detritici su versanti con pendenze superiori al 20%
G4 PERICOLOSITA GEOLOGICA MOLTO ELEVATA	Aree in cui sono presenti fenomeni attivi e relative aree di influenza, aree interessate da solitinasi e da intensi fenomeni erosivi

PERICOLOSITÀ IDRAULICA PAI F.ARNO: PI.4 molto elevata (alveo Torrente)



Legenda

PERICOLOSITÀ IDRAULICA DPGR 53/R (RU)

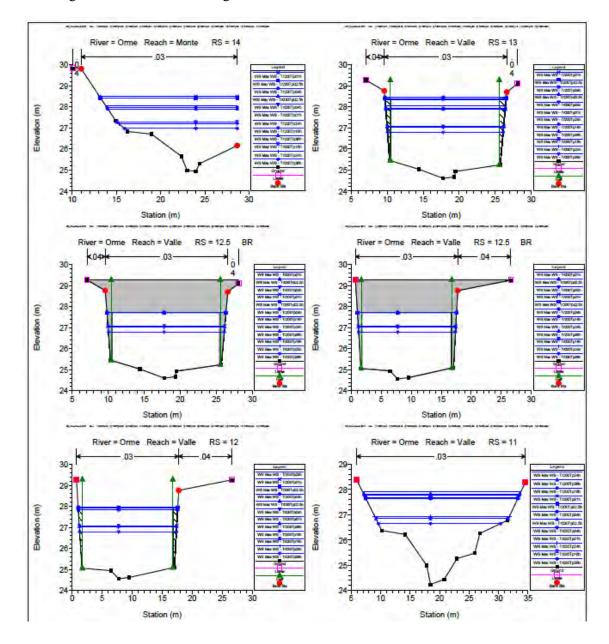
I.4 molto elevata (alveo Torrente) / I2 media

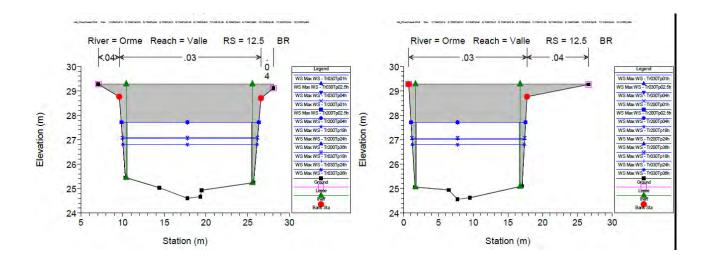
Legenda

Pericolosità definita da studi idraulici Pericolosità su base geomorfologica e storico-inventariale I3 Pericolosità idraulica elevata I1 Pericolosità idraulica modesta I4 Pericolosità idraulica molto elevata 12 Pericolosità idraulica media I3 Pericolosità idraulica elevata I4 Pericolosità idraulica molto elevata

In merito alla pericolosità idraulica locale, il Torrente Orme è stato oggetto di studi idraulici specifici realizzati a supporto della Variante 2019 al RU per interventi puntuali, dai quali si evince che l'impalcato del ponte risulta in pressione sia per eventi con tempo di ritorno 30 che 200 anni con riferimento alla portata idraulica (che tiene conto delle esondazioni a monte).

La sezione di modello del ponte è la 12.5.

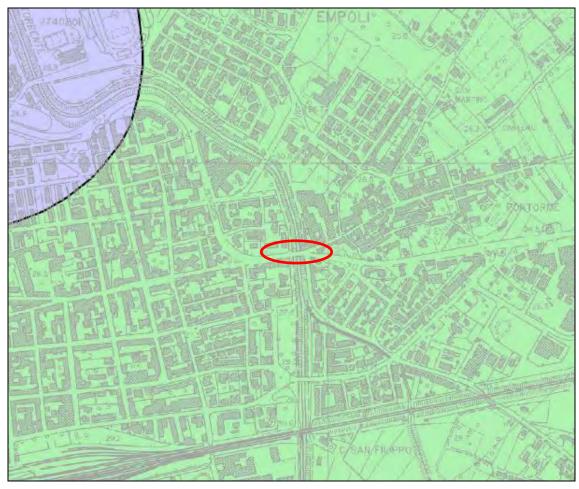

Massima portata idraulica in corrispondenza del ponte: Qmax = 120,75 m3/s (TR 200 anni)

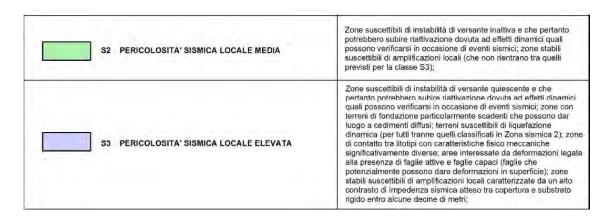

Quota intradosso ponte stato attuale: 27.71 m slm

Quota massima pelo libero a monte del ponte (sezione 13): 28.46 m slm (TR200 anni pioggia 1 ora)

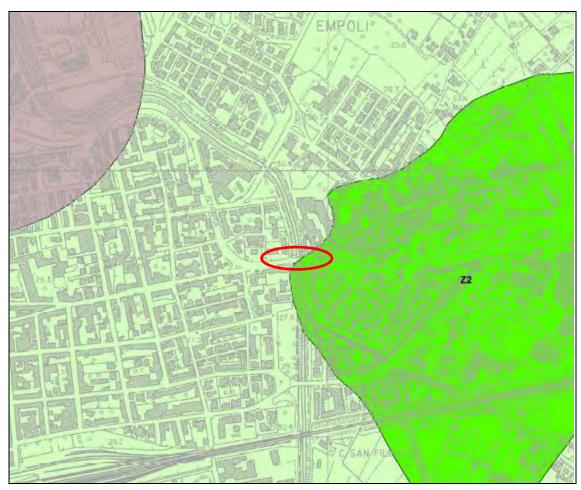
Quota massima pelo libero a valle del ponte (sezione 12): 27.96 m slm (TR200 anni pioggia 1 ora)

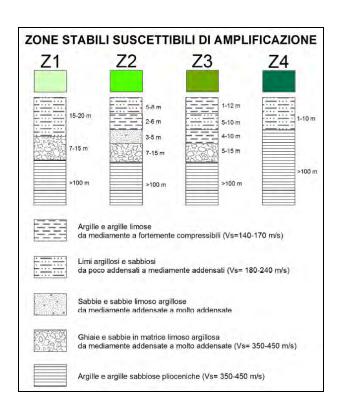
Estratti grafici dalla relazione allegata alla Variante:





HEC-RAS Locations: User Defined Profile: Max WS (Continued)														
River	Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	


Orme	Valle	13	Max WS	Tr030Tp01.0h	116.39	24.60	28.36	26.83	28.63	0.000969	2.30	50.59	16.80	0.40
Orme	Valle	13	Max WS	Tr030Tp02.5h	117.21	24.60	28.38	26.84	28.65	0.000966	2.30	50.86	16.81	0.40
Orme	Valle	13	Max WS	Tr030Tp04h	117.04	24.60	28.37	26.84	28.64	0.000966	2.30	50.80	16.81	0.40
Orme	Valle	13	Max WS	Tr030Tp18h	47.86	24.60	27.07	26.02	27.19	0.000836	1.54	31.03	16.19	0.34
Orme	Valle	13	Max WS	Tr030Tp24h	38.12	24.60	27.03	25.88	27.11	0.000564	1.25	30.46	16.17	0.28
Orme	Valle	13	Max WS	Tr030Tp36h	28.39	24.60	26.79	25.72	26.85	0.000475	1.06	26.88	16.06	0.25
Orme	Valle	13	Max WS	Tr200Tp01h	120.75	24.60	28.46	26.88	28.73	0.000950	2.32	52.04	16.85	0.40
Orme	Valle	13	Max WS	Tr200Tp02.5h	117.51	24.60	28.38	26.85	28.66	0.000964	2.31	50.96	16.82	0.40
Orme	Valle	13	Max WS	Tr200Tp04h	117.51	24.60	28.38	26.85	28.66	0.000964	2.31	50.96	16.82	0.40
Orme	Valle	13	Max WS	Tr200Tp18h	67.88	24.60	27.93	26.29	28.05	0.000522	1.54	44.08	16.60	0.29
Orme	Valle	13	Max WS	Tr200Tp24h	55.85	24.60	28.04	26.13	28.11	0.000313	1.22	45.69	16.65	0.22
Orme	Valle	13	Max WS	Tr200Tp36h	42.50	24.60	27.88	25.95	27.93	0.000217	0.98	43.31	16.57	0.19
Orme	Valle	12.5			Bridge									
Orme	Valle	12	Max WS	Tr030Tp01.0h	116.39	24.56	27.92		28.24	0.001299	2.52	46.10	16.57	0.46
Orme	Valle	12	Max WS	Tr030Tp02.5h	117.21	24.56	27.93		28.26	0.001306	2.54	46.22	16.57	0.46
Orme	Valle	12	Max WS	Tr030Tp04h	117.04	24.56	27.93		28.25	0.001305	2.53	46.19	16.57	0.46
Orme	Valle	12	Max WS	Tr030Tp18h	47.86	24.56	27.07		27.17	0.000649	1.44	33.30	16.22	0.31
Orme	Valle	12	Max WS	Tr030Tp24h	38.09	24.56	27.03		27.10	0.000437	1.16	32.71	16.20	0.25
Orme	Valle	12	Max WS	Tr030Tp36h	28.39	24.56	26.79		26.84	0.000356	0.97	29.15	16.10	0.22
Orme	Valle	12	Max WS	Tr200Tp01h	120.75	24.56	27.96		28.30	0.001339	2.59	46.71	16.58	0.47
Orme	Valle	12	Max WS	Tr200Tp02.5h	117.51	24.56	27.93		28.26	0.001309	2.54	46.26	16.57	0.46
Orme	Valle	12	Max WS	Tr200Tp04h	117.50	24.56	27.93		28.26	0.001309	2.54	46.26	16.57	0.46
Orme	Valle	12	Max WS	Tr200Tp18h	65.99	24.56	27.83		27.94	0.000461	1.47	44.76	16.53	0.27
Orme	Valle	12	Max WS	Tr200Tp24h	55.85	24.56	27.96		28.04	0.000285	1.19	46.76	16.58	0.22
Orme	Valle	12	Max WS	Tr200Tp36h	42.50	24.56	27.84		27.89	0.000189	0.95	44.93	16.53	0.17


PERICOLOSITÀ SISMICA: S2 (media)

MICROZONAZIONE SISMICA DI LIVELLO I – CARTA DELLE MOPS

Riassumendo, il ponte in studio ricade in Classe di pericolosità Geomorfologica G2-G3 (media-elevata), pericolosità idraulica I2-I4 (media-molto elevata), pericolosità sismica S2 (media).

La stratigrafia desumibile dalle colonne MOPS Z1 e Z2 indica la presenza di depositi alluvionali recenti (Olocene) limoso argillosi e sabbiosi e di ghiaie per spessori dell'ordine di $20 \div 35$ m sovrastanti depositi lacustri argillosi e argilloso sabbiosi pliocenici di spessore > 100 m.

1. INQUADRAMENTO GEOLOGICO ED IDROGEOLOGICO GENERALE

Secondo quanto riportato nella Relazione geologica di supporto al PS del Comune di Empoli, il territorio comunale è interessato da depositi alluvionali di età quaternaria, che costituiscono le zone di pianura, e da depositi più antichi, di età pliocenica, che formano l'ossatura delle zone collinari. Le formazioni presenti, partendo dai termini più antichi, possono essere così descritte:

a) Formazioni plioceniche marine

Argille azzurre di facies marina (Pag)

Litologia: argille grigie e turchine, plastiche, con intercalazioni discontinue di sabbie fini più o meno limose che aumentano nella porzioni superiori della successione. Spessore: da 50 a 90 m affiorante; notevole sviluppo nel sottosuolo (Centinaia di metri). Età: Pliocene medio-superiore

Sabbie di facies marina (Ps)

Litologia: livelli sabbiosi stratificati intercalati nelle argille (Pag). Le sabbie sono ben stratificate e presentano granulometria da media a fine. Sono debolmente cementate, poco coerenti, alternate a limi sabbiosi e sabbie limose. Nella parte orientale del settore collinare le sabbie mostrano passaggi laterali ai conglomerati. Spessore: variabile e lenticolare. Ogni orizzonte sabbioso può comunque variare da pochi metri a oltre la decina, con bruschi ispessimenti o riduzioni. Età: Pliocene medio-superiore

Conglomerati (Pcg)

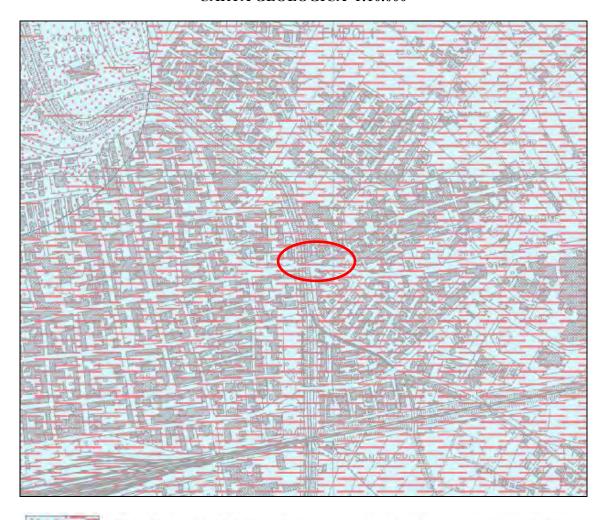
Litologia: orizzonti ciottolosi intercalati nelle argille (Pag). I ciottoli sono arrotondati, più o meno cementati ad elementi poligenici ma prevalentemente calcarei, immersi in matrice limoso-sabbiosa fine. Sono presenti alternanze metriche con banchi di sabbia. Spessore: variabile, gli orizzonti presentano lo stesso comportamento descritto per le sabbie plioceniche di cui sono il passaggio laterale di facies. Età: Pliocene medio superiore

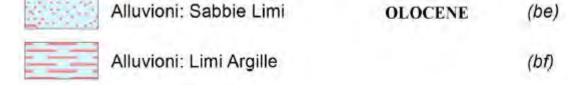
b) Formazioni quaternarie continentali

Conglomerati, sabbie e limi fluvio-lacustri (q)

Litologia: ghiaie e ciottoli ad elementi di Verrucano, appartenenti al ciclo alluvionale del Fiume Elsa e provenienti dagli alti tettonici di S. Gimignano e Monteriggioni con matrice sabbiosa e/o limosa. Spessore: fino a 15 m in affioramento; superiore nel sottosuolo. Età: Quaternario

Sedimenti alluvionali terrazzati (at)


Litologia: lembi di alluvioni terrazzate del ciclo alluvionale dell'Elsa costituiti da limi prevalenti con intercalati rari livelli di sabbia. Spessore: variabile; comunque nell'ordine di una decina di metri. Età: Olocene.


Sedimenti alluvionali (a)

Alluvioni attuali e recenti, non terrazzate, dell'Arno, dell'Elsa e degli affluenti minori in sinistra Arno. Formano la pianura che occupa gran parte della superficie del territorio comunale. La natura litologica della porzione superficiale è caratterizzata principalmente da una granulometria limosoargillosa o limoso-sabbiosa, con eccezioni abbastanza rare e limitate alle zone di paleo alveo (Arnovecchio etc.). Anche in profondità le frazioni fini sono preponderanti rispetto agli orizzonti sabbiosi e ghiaiosi. Spessore: variabile fino a 20-35 metri con un livello ciottoloso-ghiaioso basale, quasi sempre presente, di spessore massimo di 8-10 metri.

Il ponte in studio, come risulta dalla carta geologica Scala 1:10.000 di seguito riportata, ricade appunto sui sedimenti alluvionali (a):

CARTA GEOLOGICA 1:10.000

Sotto il profilo idrogeologico, nei terreni delle alluvioni attuali e recenti a granulometria grossolana e media (ghiaie e sabbie), affioranti in alcuni settori della pianura, trovano sede gli acquiferi sotterranei, la cui alimentazione dipende dalla presenza in superficie dei terreni più permeabili. Dagli studi eseguiti nel tempo è noto che il sistema alluvionale della piana di Empoli è formato da due acquiferi principali.

Acquifero A1 (superiore)

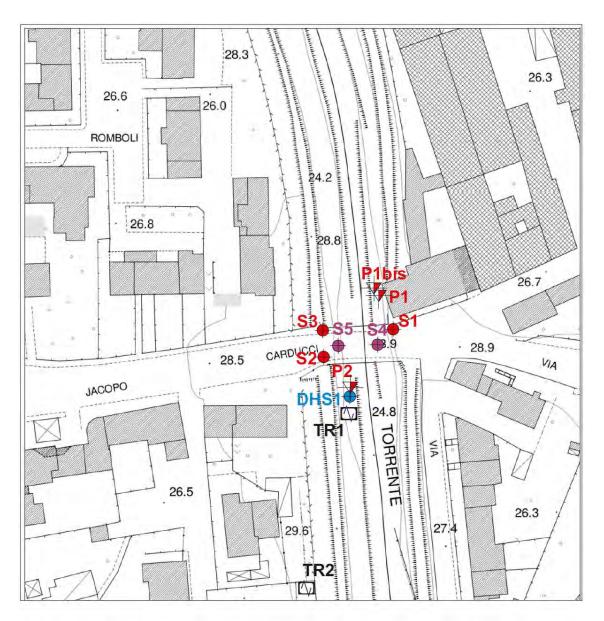
E' essenzialmente un livello sabbioso, localmente ciottoloso, lenticolare e di spessore variabile entro 15 metri dal piano campagna. E' generalmente freatico, ma localmente può assumere caratteristiche di confinamento. L'alimentazione e determinata oltre che dall'infiltrazione diretta della pioggia anche dalla ricarica da parte dei corsi d'acqua (Arno, Elsa, Orme e rii minori) e dagli apporti degli acquiferi di collina. A questo acquifero attingono i numerosi pozzi agricoli ad anelli e a sterro della pianura ed i pozzi più superficiali delle centrali acquedottistiche di Corniola, Farfalla e Serravalle-Arnovecchio.

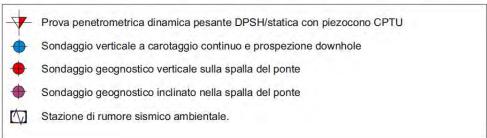
Localmente il livello freatico è stato rilevato ad 1 m di profondità rispetto al piano di esecuzione delle prove penetrometriche e del sondaggio (vedi di seguito), ma evidentemente è in diretta correlazione con il livello di scorrimento del flusso idrico nel T. Orme.

Acquifero A2 (inferiore)

E' l'acquifero principale dell'area studiata, sia per continuità che per spessore. E' legato ad un livello ciottoloso-ghiaioso presente alla base del ciclo sedimentario alluvionale. Il tetto della falda si trova tra i 10 e i 20 metri dal p.c.; lo spessore è estremamente variabile fino ad un massimo di 10 metri. E' separato dall'acquifero A1 da un setto argilloso continuo che ne determina il confinamento. Localmente i due acquiferi vengono a contatto per vie laterali.

Il livello piezometrico di questo acquifero è segnalato localmente intorno a 10.5 m s.l.m., ovvero intorno a 17 m di profondità.

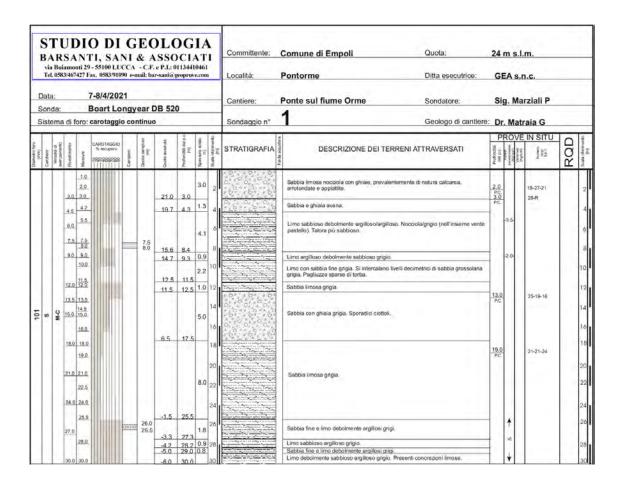

2. CAMPAGNA GEOGNOSTICA E GEOFISICA


Le indagini in sito sono state indirizzate alla definizione delle caratteristiche geotecniche e sismiche dei terreni di imposta delle fondazioni delle pile del ponte nonché di quelle dei depositi alluvionali contenuti dalle spalle del ponte.

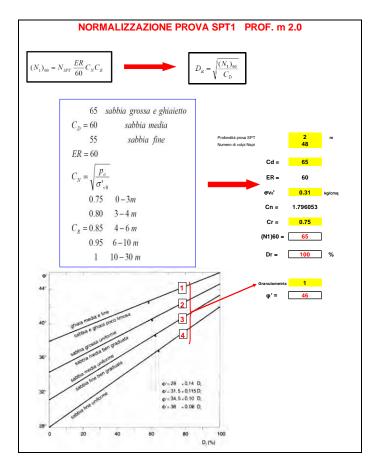
Per la definizione delle caratteristiche stratigrafiche e litotecniche locali è stata effettuata la seguente campagna geognostica e geofisica, a cura della ns. collegata società di servizi Geoprove S.a.S.:

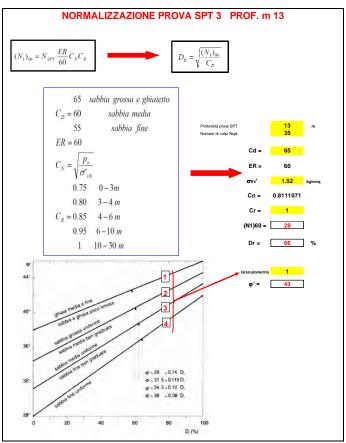
- n° 1 sondaggio verticale a carotaggio continuo della profondità di ml 30,0 (DHS1)
- $\rm n^{\circ}$ 2 sondaggi verticali a carotaggio continuo sulle spalle del ponte (S1 ed S2) della profondità di 15 e 5 m
- n° 2 sondaggi inclinati a carotaggio continuo della lunghezza di m 7÷10 (S3 ed S4)
- n° 3 prove penetrometriche dinamico pesanti /statiche piezocono (DPSH/CPTU)
- n° 1 prospezione sismica downhole nel foro di sondaggio (DHS1)
- n° 2 misure di rumore sismico ambientale a stazione singola (tr1-tr2)

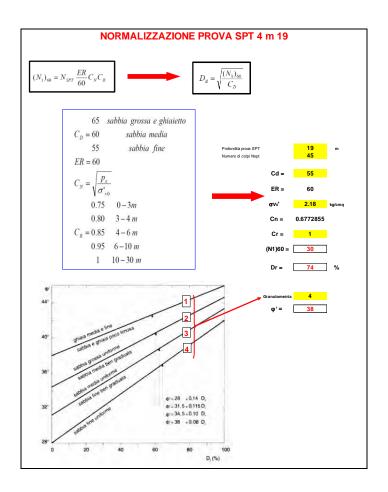
il tutto ubicato come nella Planimetria Scala 1:1.000 che segue e nel **Quadro** d'Insieme delle indagini allegato:



2.1. Sondaggi a carotaggio continuo


2.1.1. Sondaggio verticale S1DH (con downhole)


Il sondaggio, denominato S1, è stato eseguito con sonda cingolata Boart Longyear DB 520 nei giorni 7 e 8 aprile 2021. E' stato utilizzato un carotiere semplice \varnothing 101 m con tubazione di rivestimento provvisorio \varnothing 127 mm spinta fino a fondo foro. Il materiale prelevato tramite il carotiere è stato depositato in apposite cassette catalogatrici. La profondità raggiunta è stata di 30 m.


Tutte le informazioni relative al sondaggio, attrezzato con tubo in pvc per prospezione downhole, sono contenute nel log seguente e riproposte in All. n° 1 e nel quadro d'insieme:

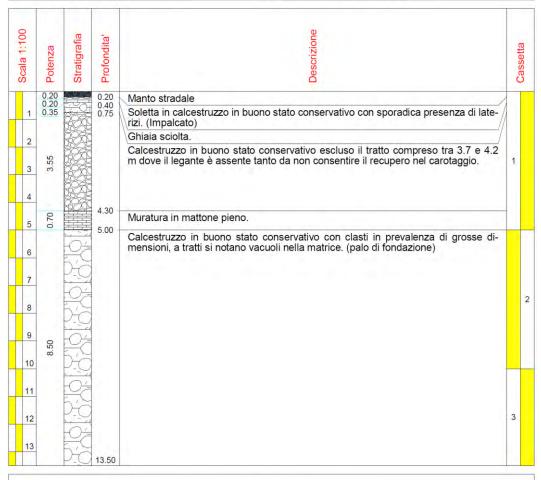
I valori delle prove SPT sono stati normalizzati ed elaborati secondo la procedura proposta da Shmertmann ottenendo un angolo di attrito ϕ ' = 46°÷43° per SPT 1 e SPT3 (sabbia e ghiaia) e ϕ ' = 38° per SPT 4 (sabbia limosa); SPT 2 non è stata elaborata avendo fornito Nspt > 50 (rifiuto), cui corrisponde comunque un angolo di attrito >45°.

2.1.2. Sondaggi verticali S1, S2 ed S3 sulle spalle

Si riportano i logs stratigrafici forniti dall'impresa di perforazione GEA s.n.c.

Cantiere : SS67 Pontorme - Empoli	N. sondaggio : S1 Spalla sponda DX lato valle			
Committente : Foppiani Group	Scala sondaggio : 1:100			
Perforatore : Sig. P. Marziali	Geologo : Dr. M. Matteini			
Coord.	Quota (p.c.) : 25 m s.l.m			
Metodo perf. : Carotaggio continuo	Data ultimazione : 01/03/2021			

Scala 1:100	Potenza	Stratigrafia	Profondita'	Descrizione		Cassetta	
1	0.15	10 (A	0.15 0.45	Manto stradale Soletta in c.l.s. (Impalcato) Calcestruzzo alterato, perdita del legante durante le operazioni di carotaggio, clasti arrotondati.			
3	3.00		2.00 -	Calcestruzzo in buono stato di conservazione eccetto passaggio da m 3.2 - 3.4 dove non si riscontra presenza di legante; sporadici frammenti di laterizio. (Spalla)	1		
8	2.00		5.00 -	Calcestruzzo in buono stato di conservazione caratterizzato da clasti anche di grosse dimensioni sino alla profondità di 12 m; da 12 m a 15 m totale assenza di malta cementizia. (Palo di fondazione)		2	100
1 1 1	3 8		12.00		3		

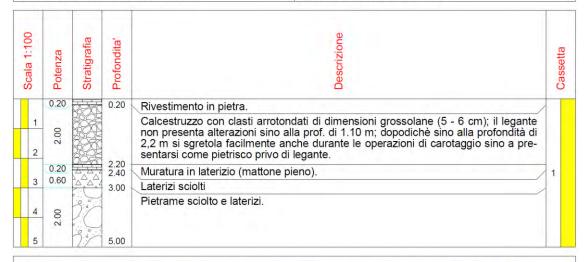

Sondaggio eseguito sulla spalla DX del ponte $\mbox{ verticalmente (inclinazione 90 <math display="inline">^{\circ})}\,,$ sul lato valle.

Committente : Foppiani Group					
Perforatore : Sig. P. Marziali	Scala sondaggio : 1:100 Geologo : Dr. M. Matteini Quota (p.c.) : 25 m s.l.m				
Coord.					
Metodo perf. : Carotaggio continuo	Data ultimazione : 01/03/2021				
Scala 1:100 Potenza Stratigrafia Profondita'	Descrizione				

1.00 Ghiaia sciolta Calcestruzzo molto alterato. (Spalla) Conglomerato cementizio molto alterato, facilmente sfarinabile alla spatola (magrone?) Calcestruzzo in buone condizioni eccetto un passaggio di 10 cm a m 3.30. Conglomerato cementizio molto alterato, facilmente sfarinabile alla spatola (magrone ?) 06.0 0.40 Ghiaia in matrice sabbiosa - limosa, addensata.

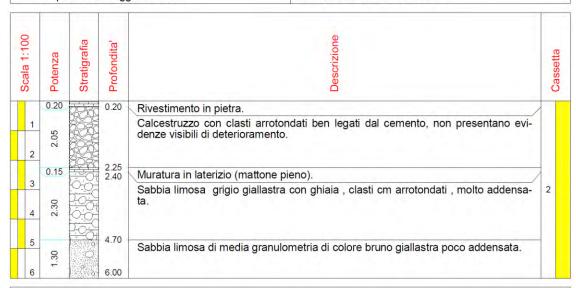
Sondaggio eseguito sulla spalla SX del ponte verticalmente (inclinazione 90°), sul lato monte.

Cantiere : SS67 Pontorme - Empoli	N. sondaggio : S3 Spalla sponda SX lato valle		
Committente : Foppiani Group	Scala sondaggio : 1:100		
Perforatore : Sig. P. Marziali	Geologo : Dr. M. Matteini		
Coord.	Quota (p.c.): 25 m s.l.m		
Metodo perf. : Carotaggio continuo	Data ultimazione : 02/03/2021		



Sondaggio eseguito verticalmente sulla spalla SX lato valle

2.1.3.Sondaggi inclinati S4 e S5 sulle spalle


Si riportano i logs stratigrafici forniti dall'impresa di perforazione GEA s.n.c.

Cantiere : SS67 Pontorme - Empoli	N. sondaggio : S4 Spalla DX, orizzontale		
Committente : Foppiani Group	Scala sondaggio : 1:100		
Perforatore : Sig. P. Marziali	Geologo : Dr. M. Matteini		
Coord.	Quota (p.c.) : 25 m s.l.m		
Metodo perf. : Carotaggio continuo	Data ultimazione : 06/04/2021		

Sondaggio eseguito al centro della spalla DX del ponte con giacitura orizzontale (incl 0°), altezza 2m dalla platea di base

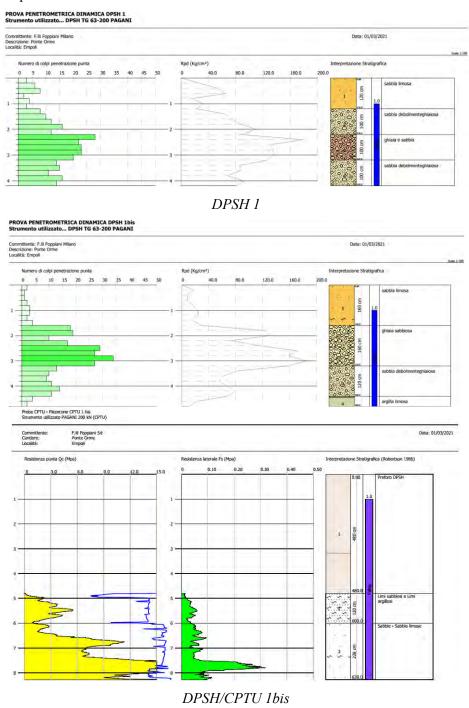
Cantiere : SS67 Pontorme - Empoli	N. sondaggio : S5 Spalla SX, inclinato		
Committente : Foppiani Group	Scala sondaggio : 1:100		
Perforatore : Sig. P. Marziali	Geologo : Dr. M. Matteini		
Coord.	Quota (p.c.): 25 m s.l.m		
Metodo perf. : Carotaggio continuo	Data ultimazione : 06/04/2021		

Sondaggio eseguito al centro della spalla SX del ponte con giacitura sub-orizzontale (incl 7°) altezza 2m dalla platea di base

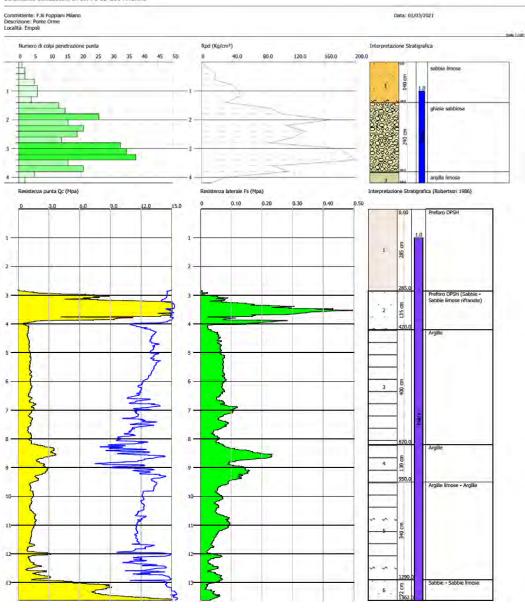
2.2. Analisi di laboratorio

Sui due campioni prelevati nel corso del sondaggio verticale sono state eseguite le seguenti determinazioni:

- peso di volume ed umidità naturale, granulometria estesa, limiti di Atterberg, prova di compressione con espansione laterale libera, prov3e edometrica, prova di taglio diretto CD.

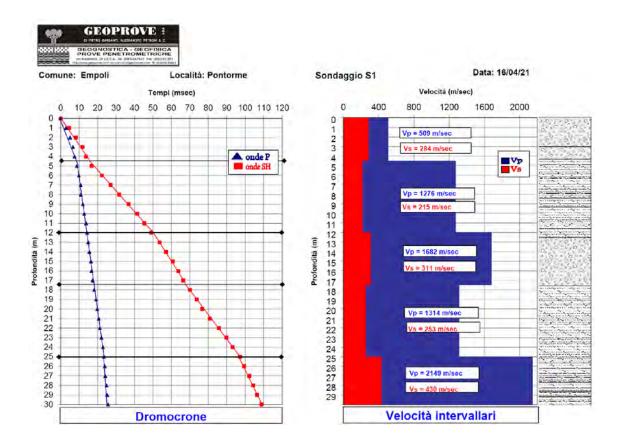

I certificati sono contenuti in All. n° 2. Di seguito si riportano le tabelle riassuntive delle prove dei due campioni:

CAMPIONE	S1C1
Profondità metri	8.0 - 8.5
Limiti di Atterberg	
Umidità naturale (%)	27.50
Limite liquido (%)	48
Limite plastico (%)	22
Indice di plasticità (%)	26
Indice di consistenza	0.79
Indice di attività	0.76
Classificaz. Casagrande	CL
Granulometria	
Ghiaia (%)	0.2
Sabbia (%)	3.9
Limo (%)	62.2
Argilla (%)	33.8
Classificazione UNI 10006	
Gruppo	A7-6
Indice di gruppo	16
Parametri fisici	
Peso volume naturale (kN/m³)	19.0
Peso volume secco (kN/m³)	14.8
Prova di Compressione E.L.L.	
Coesione non drenata, Cu (kPa)	33.7
Modulo elastico tangente iniziale, E _{ti} (kPa)	4774
Prova di taglio diretto	
Coesione, C' (kPa)	13.2
Angolo di resistenza al taglio, ¢' (°)	21.0
Prova edometrica	
Rapporto di ricompressione, Rr	0.02054
Rapporto di compressione, Rc	0.11551
Rapporto di rigonfiamento, Rs	0.03160
Pressione di preconsolidazione, o' _{vmax} (kPa)	114
Cv (cm²/sec)	2.90E-04
K (cm/sec)	6.80E-09
Cv (cm²/sec)	3.00E-04
K (cm/sec)	4.91E-09


CAMPIONE	51C2
Profondità metri	26.0 - 26.5
Limiti di Atterberg	
Umídità naturale (%)	14.68
Limite liquido (%)	31
Limite plastico (%)	21
Indice di plasticità (%)	10
Indice di consistenza	1.63
Indice di attività	0.35
Classificaz. Casagrande	CL
Granulometria	
Ghiaia (%)	0.1
Sabbia (%)	23.8
Lima (%)	47.9
Argilla (%)	28.2
Classificazione UNI 10006	
Gruppo	A4
Indice di gruppo	8
Parametri fisici	
Peso volume naturale (kN/m³)	20.7
Peso volume secco (kN/m³)	17.8
Prova di Compressione E.L.L.	
Coesione non drenata, Cu (kPa)	192.5
Modulo elastico tangente iniziale, Eti (kPa)	33687
Prova di taglio diretto	
Coesione, C' (kPa)	4.1
Angolo di resistenza al taglio, ¢' (°)	29.3
Prova edometrica	
Rapporto di ricompressione, Rr	0.02526
Rapporto di compressione, Rc	0.07579
Rapporto di rigonfiamento, Rs	0.02260
Pressione di preconsolidazione, o' _{vmax} (kPa)	209
Cv (cm²/sec)	4.298E-03
K (cm/sec)	2.231E-08
Cv (cm²/sec)	2.225E-03
K (cm/sec)	8.03E-09

2.3. Prova penetrometriche DPSH/CPTU

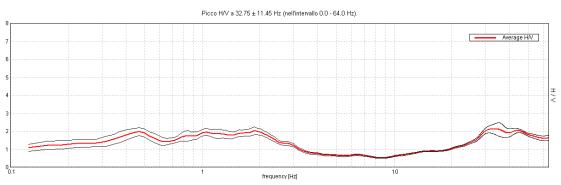
Al fine di valutare le caratteristiche geotecniche della copertura alluvionale sono state eseguite tre prove penetrometriche con modalità inizialmente dinamica pesante DPSH per superare lo strato sabbioso ghiaioso superficiale e quindi con modalità statica e piezocono CPTU. La CPTU1 non è però riuscita a oltrepassare lo strato sabbioso ghiaioso superficiale a causa del franamento delle pareti e si è arrestata a circa 3.7 m di profondità. Per le modalità operative e l'elaborazione geotecnica si rimanda all'All. n° 3, mentre di seguito si riportano i diagrammi penetrometrici:


PROVA PENETROMETRICA DINAMICA DPSH 2 Strumento utilizzato... DPSH TG 63-200 PAGANI

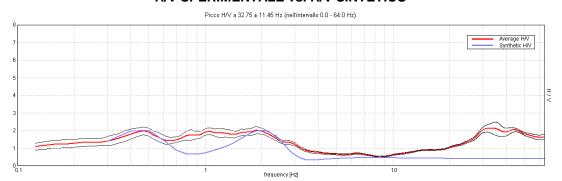
DPSH/CPTU 2

2.4. Prospezione downhole

Per le modalità operative e l'elaborazione dei dati si rimanda all'All. n° 4: di seguito si riportano dromocrone, velocità intervallari e parametri dinamici ricavati dalla downhole eseguita nel foro del sondaggio S1 con passo di 1.0 m.

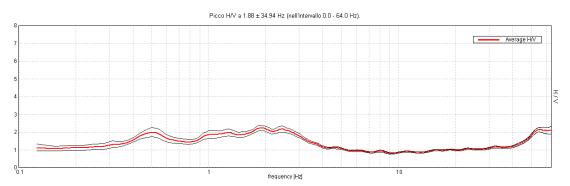

Velocità calcolate Pa				rametri dina	amici deriv	ati	
Profondità m	Vp	Vs	Vp/Vs	Rapporto Poisson	Densità Gamma (kg/dmc)*	Modulo di taglio G (kg/cmq)	Modulo di Young E (kg/cmq)
0-4.5	509	284	1.79	0.27	1.76	1447	3690
4.5-12	1276	215	5.93	0.49	1.65	776	2306
12-17.5	1682	311	5.41	0.48	1.81	1780	5277
17.5-25	1314	253	5.20	0.48	1.71	1114	3301
25-30	2149	430	4.99	0.48	1.96	3696	10934
* valori stima	ti secondo K	eceli : g = (4	,3*Vs^0,25)/1	10 kg/dm3			

La prospezione downhole rispecchia fedelmente la stratigrafia rilevata, con velocità Vs oscillanti tra 215 e 311 m/s fino a 25 m di profondità, corrispondenti a modeste variazioni di rigidità sismica tra i livelli prevalentemente fini e quelli sabbioso-ghiaiosi. Al di sotto dei 25 m si incontrano i depositi fluviolacustri pliocenici caratterizzati da velocità Vs superiori (Vs = 430 m/s).

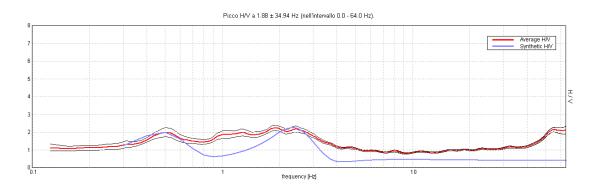

2.5. Misure di rumore sismico ambientale a stazione singola

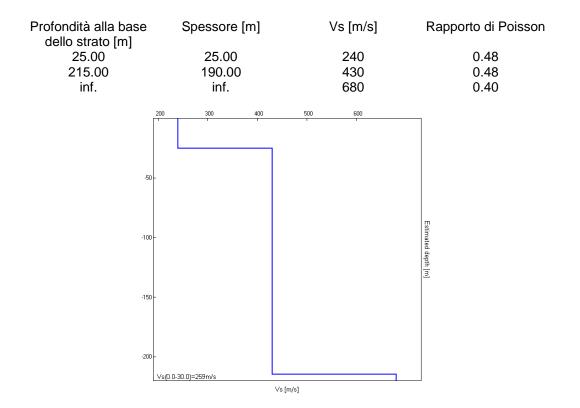
Anche in questo caso si rimanda all'All. n° 4 per la teoria, le modalità operative e l'elaborazione dei dati. Di seguito si riportano i diagrammi di TR1 e Tr2 con la valutazione del profilo di velocità spinto al di sotto della profondità raggiunta dalla prospezione DH.

TR1 RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE



H/V SPERIMENTALE vs. H/V SINTETICO




Profondità alla base dello strato	Spessore	e [m]	Vs [m/s]	Rapporto di Poisson
[m] 30.00 230.00 inf.	30.00 200.0 inf.		245 430 680	0.48 0.48 0.40
	200 300 50 - -100 - -200 -	400 50	·	Estimated depth [m]
	Vs(0.0-30.0)=245m/s	√s [m/s]		

TR2 RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

H/V SPERIMENTALE vs. H/V SINTETICO

Entrambe le misure confermano sia lo spessore dei depositi alluvionali recenti, sia il grande spessore dei depositi fluviolacustri, come indicato dalla cartografia MOPS (vedi pag. 9).

2.6. Stratigrafia di dettaglio dei terreni

La stratigrafia media del sito, dedotta dalla summa delle indagini disponibili, è descrivibile come segue (vedi anche la sezione scala 1:200 alla pag. seguente, comprensiva della tabella riassuntiva del campo di variabilità dei parametri e dei parametri caratteristici suggeriti al Progettista), tenendo conto che il piano di esecuzione del sondaggio e delle prove penetrometriche + più alto di 0.75÷0.5 m rispetto all'estradosso della piastra di fondazione delle spalle:

prescindendo dal riempimento arginale e da quello del rilevato stradale, valutabile in 3.0÷3.5 m di spessore, superiormente è presente uno strato di **sabbia limosa sciolta** per il primo metro, quindi di **sabbia e ghiaia, con grado di addensamento da mediamente addensato ad addensato** caratterizzato da un numero di colpi Nspt = 24÷50 fino a rifiuto (Nspt >50) e da velocità delle onde di taglio Vs = 284 m/s, dello spessore di circa 4 m, per il quale si stimano i seguenti parametri geomeccanici:

peso di volume naturale	$\gamma = 20 \div 21$	KN/m^3
angolo di attrito interno in condizioni drenate	$\varphi = \varphi' = 36^{\circ} \div$	>45°
coesione efficace	c = c' = 0	
Modulo edometrico (secondo Malcev):	$Mo = 30 \div 40$	MPa
Modulo di taglio (dinamico)	G = 140	MPa
Modulo di Young (dinamico)	E = 360	MPa

Dalla profondità di 4÷4.5 m fino a 12.5 m segue uno strato di limo argilloso e talora sabbioso compatto caratterizzato da una resistenza alla punta del penetrometro statico Qc = 0.9÷1.2 MPa e da velocità delle onde di taglio Vs = 215 m/s, per il quale si stimano i seguenti parametri geomeccanici:

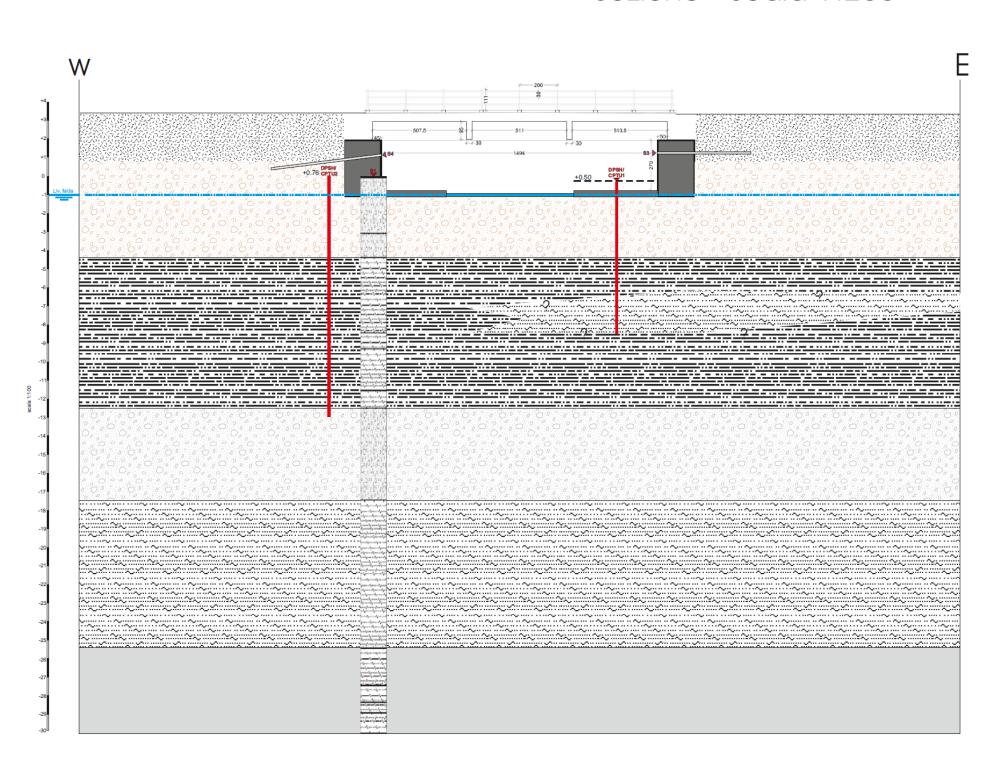
peso di volume naturale	$\gamma = 19 \div 19.5$	KN/m^3
coesione non drenata	$c_u = 35 \div 50$	KPa
angolo di attrito interno in condizioni drenate	$\varphi' = 21^{\circ}$	(da camp. S1C1)
coesione efficace	c' = 13.2	KPa (da camp. S1C1)
Modulo edometrico (secondo Sanglerat):	$Mo = 3.5 \div 7.5$	MPa
Modulo di taglio (dinamico)	G = 76	MPa
Modulo di Young (dinamico)	E = 226	MPa

In CPTU 1bis è presente da m 6.5 di profondità un'intercalazione di **sabbia** addensata (Qc = 6÷28 MPa) entro la quale si è arrestata la prova a m 8.25 di profondità.

- Dalla profondità di 12.5 m fino a 17.5 m segue nuovamente uno strato di **sabbia con ghiaia e sporadici ciottoli da mediamente addensata ad addensata** fino alla profondità di 17.5 m, caratterizzato da una resistenza alla punta del penetrometro statico Qc = 6÷15 MPa, da un numero di colpi della prova SPT Nspt = 35 e da velocità delle onde di taglio Vs = 311 m/s, per il quale si stimano i seguenti parametri geomeccanici:

```
peso di volume naturale  \begin{array}{ll} \gamma &= 20 \div 21 & KN/m^3 \\ \text{angolo di attrito interno in condizioni drenate} & \phi = \phi' = 38^\circ \div 43^\circ \\ \text{coesione efficace} & \text{c} = \text{c}' = 0 \end{array}
```

Modulo edometrico (secondo Malcev):	$Mo = 30 \div 40$	MPa
Modulo di taglio (dinamico)	G = 175	MPa
Modulo di Young (dinamico)	E = 518	MPa


- Dalla profondità di 17.5 m fino a 25.5 m segue uno strato di **sabbia limosa addensata** caratterizzato da un numero di colpi Nspt = 45 e da velocità delle onde di taglio Vs = 253 m/s, per il quale si stimano i seguenti parametri geomeccanici:

peso di volume naturale	$\gamma = 20 \div 20.5$	KN/m^3
angolo di attrito interno in condizioni drenate	φ' = 38°	
coesione efficace	c' = 0	
Modulo edometrico (secondo Malcev):	Mo = 25	MPa
Modulo di taglio (dinamico)	G = 110	MPa
Modulo di Young (dinamico)	E = 323	MPa

- Dalla profondità di 25.5 m fino a fondo foro (m 30) segue uno strato di **sabbia fine e limo sabbioso molto addensato**, caratterizzato da velocità delle onde di taglio Vs = 430 m/s, riferibile al "substrato" dei depositi fluviolacustri pliocenici, per il quale si stimano i seguenti parametri geomeccanici:

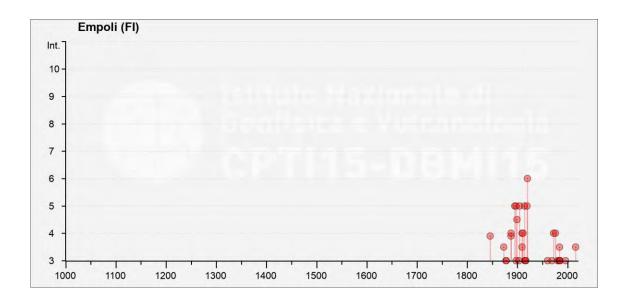
peso di volume naturale	$\gamma = 21$	KN/m^3
coesione non drenata	$c_{\rm u} = 192$	KPa (da camp. S1C2)
angolo di attrito interno in condizioni drenate	$\varphi' = 29.3^{\circ}$	(da camp. S1C2)
coesione efficace	c' = 4.1	KPa (da camp. S1C2)
Modulo edometrico:	Mo = >25	MPa
Modulo di taglio (dinamico)	G = 362	MPa
Modulo di Young (dinamico)	E = 1072	MPa

Sezione - Scala 1:200

Stima del campo di variabilità dei parametri geotecnici

		γ (kN/m³)	γ' (kN/m³)	cu (kPa)	φ'(°)	c' (kPa)	Mo (MPa)
	Rilevato, riporto	1.9	1		30°	0	-
0000	sabbia e ghiaia da mediamente addensata ad addensata	20+21	11+12	-	36°+>45°	0	30+40
	limo argilloso e talora sabbioso compatto, con livelli di sabbia addensata	19+19.5	10+10.5	35+50	21°	13	3.5+7.5
0.000	sabbia con ghiaia e sporadici ciottoli da mediamente addensata ad addensata	20+21	11+12	-	38°+43°	0	30+40
	sabbia limosa addensata	20+20.5	11+11.5	-	38°	0	25
	sabbia fine e limo sabbioso molto addensato	21.0	12.0	190	29°	4	>25

Parametri geotecnici caratteristici


		$\gamma \kappa (kN/m^3)$	γ'k (kN/m³)	cuk (kPa)	φ'k(°)	c'k (kPa)	Mo (MPa)
	Rilevato, riporto	1.9	1	-	30°	0	-
000	sabbia e ghiaia da mediamente addensata ad addensata	20.0	11.0	1	38°	0	30+40
	limo argilloso e talora sabbioso compatto, con livelli di sabbia addensata	18.0	9.0	35	21	10	3.5+7.5
0000	sabbia con ghiaia e sporadici ciottoli da mediamente addensata ad addensata	20.0	11.0	-	38°	0	30+40
	sabbia limosa addensata	20.0	11.0	-	36°	0	25
	sabbia fine e limo sabbioso molto addensato	21.0	12.0	150	26°	4	>25

4. PERICOLOSITÀ SISMICA DI BASE E LOCALE

4.1. Storia sismica del Comune di Empoli

E' stata eseguita una ricerca degli eventi storici con risentimento nel territorio comunale, all'interno dei cataloghi sismici pubblicati da vari enti di ricerca, in modo da avere un'idea sulla sismicità storica del territorio.

In particolare, dal catalogo CPTI15 (Catalogo Parametrico dei Terremoti Italiani a cura di Andrea Rovida, Mario Locati, Romano Camassi, Barbara Lolli, Paolo Gasperini - 2015), non sono stati rilevati forti terremoti con epicentri localizzati nel territorio comunale di Empoli: la ricerca dal catalogo DBMI15 degli eventi sismici con risentimento nel territorio comunale mostra 42 informazioni per Empoli, come da tabella seguente, dalla quale si evince che le sorgenti epicentrali principali che hanno generato eventi con risentimenti apprezzabili nell'area comunale sono dispersi a 360° dalla costa pisano-livornese alla Gargagna, Mugello, Appennino Forlivese Umbria e così via: tuttavia gli epicentri dei sismi più forti catalogati sono prevalentemente collocati in area appenninica ed in particolare in Mugello e Garfagnana/Lucchesia che rappresenta l'area sismogenetica più vicina e più attiva, dove si segnalano i terremoti del 1914 con intensità epicentrale VII MCS e magnitudo Mw = 5.63 che ha comportato un risentimento (intensità al sito Is MCS) V MCS e quello del 1920 con intensità epicentrale X MCS e Mw = 6.53 con risentimento VI MCS a Empoli.

Effetti		In occasione del terremoto del	
Int.	Anno Me Gi Ho Mi Se	Area epicentrale	NMDP Io Mw
F		Colline Pisane	121 9 6.0
NF	₫ 1869 02 07	Senese	8 6-7 4.8
3-4		Appennino tosco-ligure	64 6-7 5.2
2-3	₽ 1874 10 07	Imolese	60 7 4.9
2	₽ 1875 03 17 23 51	Costa romagnola	144 8 5.7
3	1877 03 03 02 09	Chianti	5
3	₽ 1878 06 04 14 40	Bolognese	13 5 4.5
F	□ 1887 02 23 05 21 5	D Liguria occidentale	1511 9 6.2
4		5 Fiorentino	101 6 4.4
5		2 Fiorentino	401 8 5.5
3	☑ 1897 07 27 09 02 1	4 Valdarno inferiore	33 5-6 4.2
5	1897 09 06 03 10 4	4 Valdarno inferiore	104 5-6 4.5
4-5	☑ 1899 06 26 23 17 2	2 Valle del Bisenzio	138 7 5.0
3	1903 07 27 03 46	Lunigiana	79 7-8 5.1
5	₱ 1904 11 17 05 02	Pistoiėsė	204 7 5.1
NF		5 Chianti	35 6 4.4
4	₱ 1909 01 13 00 45	Emilia Romagna orientale	867 6-7 5.3
3-4	₱ 1909 08 25 00 22	Crete Senesi	259 7-8 5.3
4	₽ 1911 09 13 22 29 0	2 Chianti	115 7 5.0
NF	□ 1913 02 13 16 39	Corno alle Scale	26 5 4.1
5	□ 1914 10 27 09 22	Lucchesia	660 7 5.6
3	Ø 1915 01 13 06 52 4	3 Marsica	1041 11 7.0
3	1916 05 17 12 50	Riminese	132 8 5.8
3		9 Alta Valtiberina	134 9-10 5.9
5		3 Mugello	565 10 6.3
6) Garfagnana	750 10 6.5
NE	₽ 1950 09 05 04 08	Gran Sasso	386 8 5.6
NF	□ 1952 12 02 06 13 2	2 Appennino forlivese	53 5 4.4
3	₫ 1960 10 29 00 08 3	9 Mugello	69 7 4.9
3	₽ 1969 01 06 22 03 2	3 Appennino pistoiese	74 6-7 4.6
NF	₱ 1970 02 09 07 39	Appennino forlivese	30 5-6 4.5
4	1972 10 25 21 56 1	Appennino settentrionale	198 5 4.8
4	@ 1976 05 06 20 00 1	Friuli	770 9-10 6.4
3	Ø 1980 11 23 18 34 S	2 Irpinia-Basilicata	1394 10 6.8
3	€ 1983 11 09 16 29 5	2 Parmense	850 6-7 5.0
3	1984 04 22 17 39 2	l Costa pisano-livornese	39 6 4.6
3-4	₽ 1984 04 22 19 45 0	Costa pisano-livornese	6 5 4.1
NF		9 Umbria settentrionale	709 7 5.6
3	₽ 1985 01 23 10 10 1		73 6 4.6
2-3	Ø 1995 10 10 06 54 2		341 7 4.8
3	1996 10 15 09 55 S		135 7 5.3
3-4	Ø 2016 10 26 19 18 0		77 6.0

Dalla Carta delle massime Osservazioni macrosismiche rilevate nei comuni italiani si conferma come il massimo osservato per il Comune di Empoli sia il VII° MCS (vedi Fig. 1): da quanto sopra descritto si può pertanto trarre la conclusione che la classificazione sismica del territorio comunale di Empoli e di quelli contermini appare una logica conseguenza dell'analisi della sismicità storica dell'area.

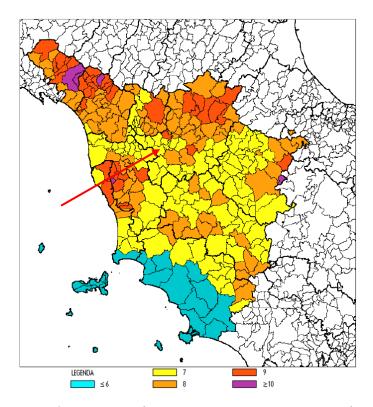


Fig. 1 – Massime intensità macrosismiche osservate nei comuni toscani valutate a partire dalla banca dati macrosismici del GNDT e dai dati del Catalogo dei Forti Terremoti dell'INGV marzo 1996

Con la pubblicazione dell'Ordinanza del Presidente del Consiglio dei Ministri n° 3274 del 20 marzo 2003, "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" (Supplemento Ordinario n. 72 della G.U. n. 105 del 8.05.2003) è finalmente entrata in vigore la nuova Classificazione Sismica del Territorio Italiano, basata sulle indicazioni del Gruppo di Lavoro del Dipartimento della Protezione Civile del 1998: la nuova classificazione è stata recepita dalla Regione Toscana con D.G.R.T. n. 751 del 28 luglio 2003, in base alla quale il territorio del Comune di Pescia, precedentemente "non classificato" (NC), è stato definito sismico di Zona 3.

Successivamente la Commissione Grandi Rischi del Dipartimento della Protezione Civile ha approvato, nella seduta del 6 aprile 2004, la nuova Mappa di Pericolosità sismica del Territorio Nazionale (vedi Fig. 2 e 3): questa è stata recepita dalla O.P.C.M. n° 3519 del 28 Aprile 2006 (vedi Fig. 4) ed è divenuta infine la mappa di riferimento prevista dai D.M. 14 Gennaio 2008 e D.M 17 Gennaio 2018 – Norme tecniche per le costruzioni.

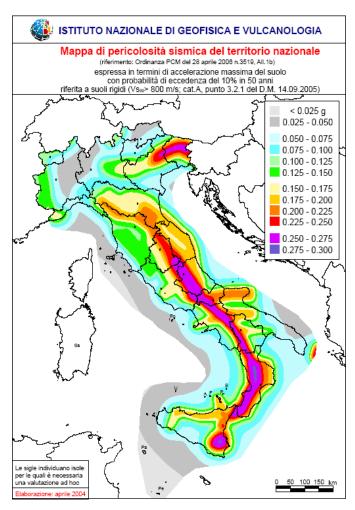


Fig. 2 – Mappa di pericolosità sismica del territorio nazionale

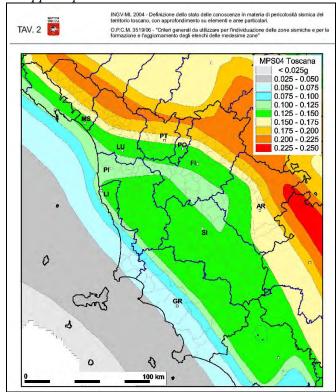


Fig. 3 – Mappa di pericolosità sismica del territorio regionale

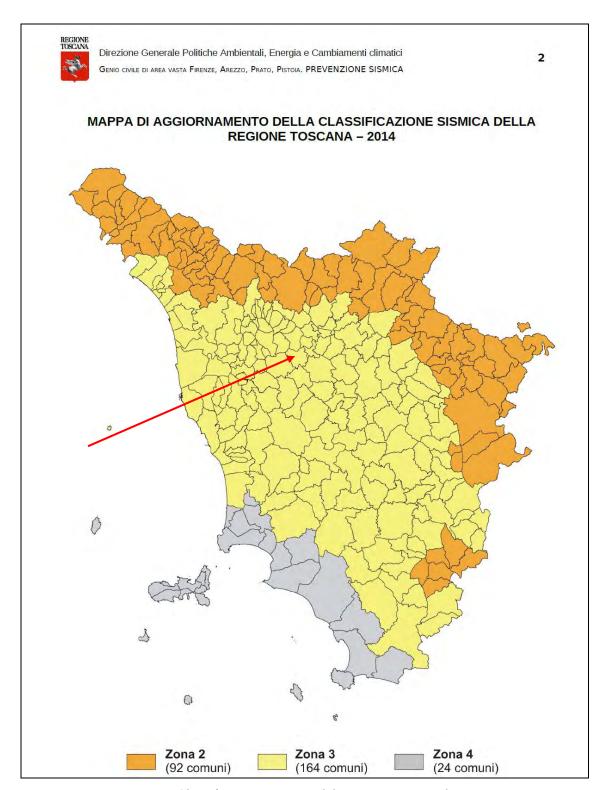


Fig. 4 – Classificazione sismica del territorio regionale

Con Decreto del 14 Gennaio 2008 e con il più recente D.M. 17 Gennaio 2018 sono state infine approvate le *Norme tecniche per le costruzioni*. In tali normative la stima della pericolosità sismica, intesa come accelerazione massima orizzontale su suolo rigido, viene definita mediante un approccio "sito dipendente" e non più "zona dipendente": in altre parole, definite le coordinate del sito interessato dal progetto, questo sarà sempre compreso tra 4 dei

10751 punti della griglia di accelerazioni (Tab 1 del D.M. 14 Gennaio 2008), e, tramite media pesata, ad esso competerà un valore specifico di accelerazione.

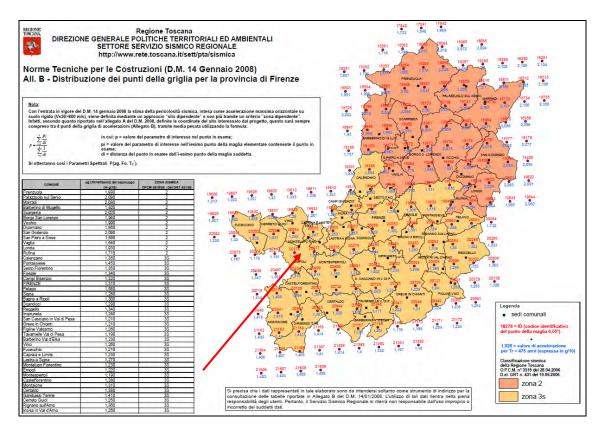


Fig. 5 – Classificazione sismica del territorio della Provincia di Firenze e griglia delle accelerazioni

4.2. Pericolosità sismica di base

Per effetto della propagazione delle onde sismiche, il terreno trasmette sui fabbricati il moto sismico ovvero l'*azione sismica*, alla quale le strutture reagiscono con una *risposta dinamica* che va verificata negli aspetti di sicurezza e di prestazioni attese dell'opera in progetto.

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, sono stabilite a partire dalla "pericolosità sismica di base" del sito di costruzione: questa è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (categoria A), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_c(T)$, con riferimento a prefissate possibilità di eccedenza P_{Vr} (vedi tabella) nel periodo di riferimento V_r ("Vita di riferimento").

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento Pvr, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima al sito

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale T_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Nei confronti delle azioni sismiche gli stati limite, di esercizio ed ultimi, sono i seguenti:

Stati limite		PVr: Probabilità di superamento nel periodo di riferimento Vr
Stati limite	SLO	81%
di esercizio	SLD	63%
Stati limite	SLV	10%
Ultimi	SLC	5%

SLO: Stato limite di operatività

SLD: Stato limite di danno

SLV: Stato limite di salvaguardia della vita

SLC: Stato limite ultimo di prevenzione del collasso

Vr = Vn * Cu vita di riferimento, data dal prodotto della Vita Nominale Vn per il Coefficiente d'uso Cu

La normativa definisce l'azione sismica per quattro classi d'uso delle strutture:

2.4.2. Classi d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Come anticipato in premessa, trattasi di un ponte ricadente secondo NTC 2018 in Classe d'uso III, con coefficiente d'uso cu = 1,5, vita nominale = 50 anni e conseguente vita di riferimento Vr = 75 anni.

Per le coordinate del sito ED 50 latitudine: 43.722015, longitudine: 10.961222, si otterranno, secondo la griglia di riferimento di cui alla Tab. 1 delle NTC 2018 ed utilizzando il programma Spettri del Ministero dei LLPP, i valori di accelerazione di base riportati nella tabella che segue, calcolati secondo la relazione sotto riportata.

$$a_{g} = \frac{\sum_{i=1}^{4} \frac{a_{g_{i}}}{d_{i}}}{\sum_{i=1}^{4} \frac{1}{d_{i}}}$$

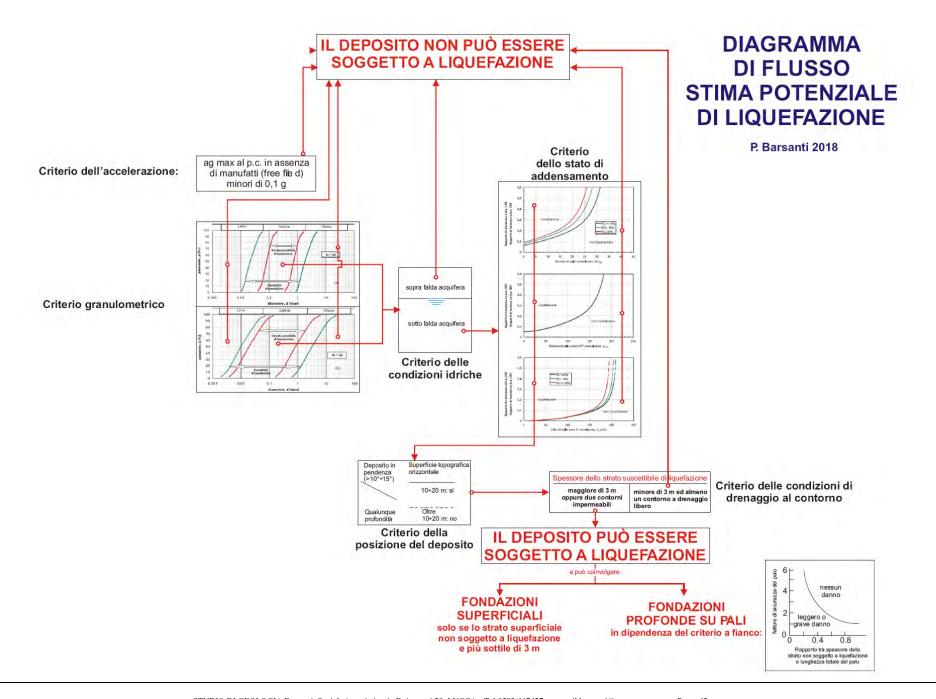
Valori dei parametri a_g, F_o, T_C per i periodi di ritorno T_R di riferimento

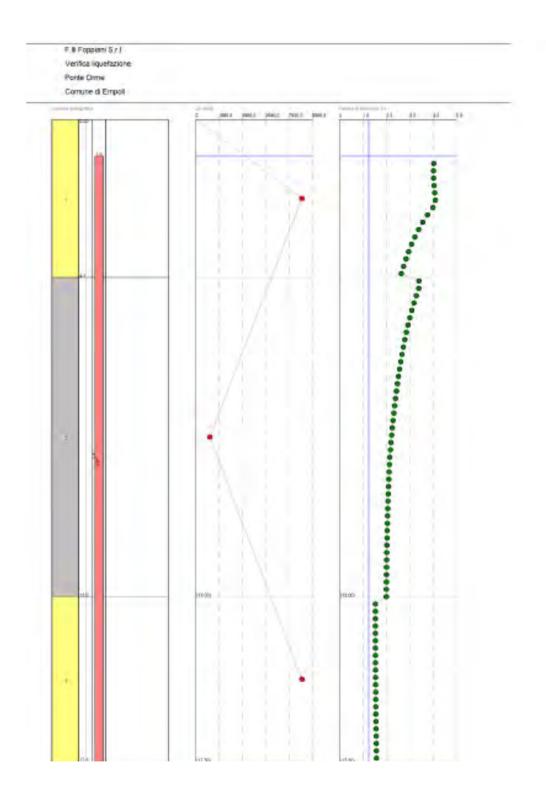
T _R	a_{g}	F _o	T _C *
[anni]	[g]	[-]	[s]
30	0.044	2.563	0.246
50	0.053	2.581	0.257
72	0.060	2.612	0.268
101	0.068	2.593	0.274
140	0.076	2.603	0.278
201	0.087	2.581	0.285
475	0.121	2.477	0.290
975	0.158	2.401	0.295
2475	0.209	2.407	0.306

Per quanto concerne i parametri da assumere nella progettazione, si è considerata una vita nominale del ponte, come comunicato dal Progettista, $V_N = \geq 50$ anni ed una Classe d'uso III (costruzioni con sensibile affollamento), da cui consegue una vita di riferimento $V_R = C_u * V_N = 1.5 * 50 = 75$ anni, il che determina i valori dei parametri da assumere per la progettazione agli stati limite come da tabella seguente, il tutto ottenuto ancora con il programma Spettri-NTC ver 1.03.

Valori dei parametri a_q, F_o, T_C^{*} per i periodi di ritorno T_R associati a ciascuno SL

SLATO	T _R	a_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	45	0.051	2.578	0.255
SLD	75	0.061	2.610	0.269
SLV	712	0.141	2.434	0.293
SLC	1462	0.179	2.404	0.300


4.3. Verifica del potenziale di liquefazione


La normativa sismica prevede che debba innanzitutto essere verificato che i terreni siano esenti da rischi di instabilità di pendii e di cedimenti permanenti causati da fenomeni di liquefazione o eccessivo addensamento in caso di terremoto. Nel caso in studio sono esclusi problemi di stabilità, essendo il sito edificando pianeggiante.

Per quanto concerne la verifica alla liquefazione del deposito, il D.M. 17 Gennaio 2018 – Norme tecniche per le costruzioni, prescrive che la verifica alla liquefazione non sia eseguita qualora si verifichi almeno una delle seguenti le seguenti condizioni (vedi anche il diagramma di flusso alla pag. seguente):

- 1) accelerazione massima attesa in superficie in condizioni free-field (assenza di manufatti) minore di 0.1 g;
- 2) profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 3) depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60} > 30$ oppure $qc_{1N} > 180$ kPa, dove $(N_1)_{60}$ è il valore della resistenza determinata con prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione verticale efficace di 100 kPa e qc_{1N} è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione verticale efficace di 100 kPa;
- 4) distribuzione granulometrica esterna alle zone indicate nelle Fig. 7.11.1 delle norme.

Nel caso in studio si ritiene che i terreni non siano liquefacibili in relazione sia al criterio granulometrico, trattandosi prevalentemente di materiali sabbioso ghiaiosi o con abbondante frazione argillosa. Si è comunque proceduto ad una verifica secondo il metodo di Robertson 1986, basato sui valori di resistenza alla punta qc e di attrito laterale fs delle prove penetricometriche CPTU. Come visibile a pag. 37 e in All. 4, i depositi non risultano liquefacibili. Il rischio di liquefazione secondo Iwasaki risulta infine "molto basso".

4.4. Pericolosità sismica locale

Ai fini della definizione delle azioni sismiche di progetto, nelle norme viene data importanza sostanziale ai diversi profili stratigrafici del sottosuolo, i quali, in base alle loro caratteristiche di spessore e di rigidezza sismica, possono amplificare il moto sismico in superficie rispetto a quello indotto alla loro base. Deve inoltre essere valutata l'influenza delle faglie "attive" o "capaci", non segnalate nell'area in studio.

Per quanto concerne la determinazione dell'azione sismica secondo l'approccio semplificato delle "Categorie di suolo di fondazione" si procede secondo quanto indicato dal D.M 17 Gennaio 2018 al par. 3.2.2., valutando la velocità equivalente delle onde sismiche trasversali nel sottosuolo (Vs,eq): nel caso in esame le fondazioni delle spalle sono presumibilmente di tipo "a pozzo " mentre l'azione sismica sulle spalle del ponte deve tener conto di uno spessore di circa 3÷4 m tra depositi alluvionali e riporto: complessivamente la profondità del substrato sismico risulta superiore a 30 m, per cui la Vs,eq velocità equivalente di propagazione delle onde di taglio, calcolata con la seguente espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

in cui:

hi spessore dell'i-esimo strato;

VS,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati:

H profondità del substrato assunto = 30 m nel caso in cui esso si incontri a profondità maggiori di 30 m come nel caso in esame.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera.

Si calcola dunque dalla prospezione downhole **Vs,eq = 277 m/s**: con riferimento alla Tab. 3.2.II delle NTC 2018 di seguito riportata, si iscrive pertanto il terreno di fondazione nella categoria di suolo di fondazione C:

Tab. 3.2.II – *Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.*

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	<i>Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-</i> <i>rie C o D,</i> con profondità del substrato non superiore a 30 m.

Per quanto concerne invece le condizioni topografiche, il sito è classificabile in Categoria T1, come da Tab. 3.2.III

Tab. 3.2.III – Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

4.5. Spettro di risposta elastico

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale normalizzata (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5% moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale: sia la forma spettrale che il valore di a_g dello spettro "di base" variano al variare della probabilità di superamento nel periodo di riferimento (vedi par. precedente).

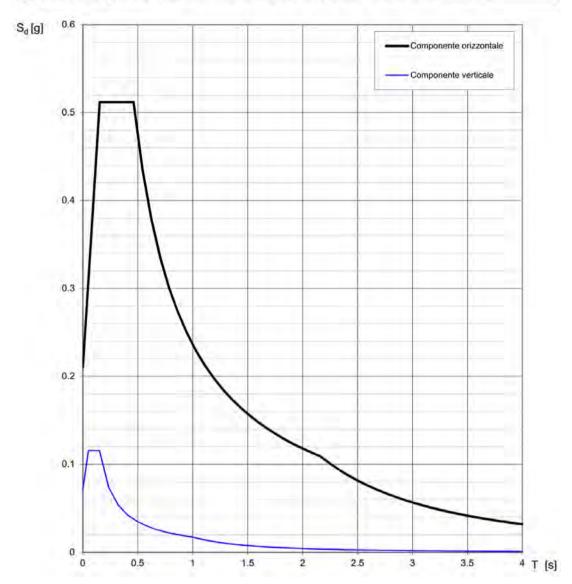
La forma spettrale "di base" viene poi variata in funzione di alcuni coefficienti, riferibili sia al "fattore terreno" (amplificazione stratigrafica – Ss), sia al "fattore topografico" (amplificazione topografica – St), generando lo spettro di risposta elastico "di sito", così come indicato nelle Tab. 3.2.IV e TAB. 3.2.V che seguono:

S = Ss * St : è il coefficiente che tiene conto della categoria di sottosuolo (Ss) e delle condizioni topografiche (St)

Cc = coefficiente funzione della categoria di sottosuolo

Tab. 3.2.IV – Espressioni di S_s e di C_c

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25\cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$


Variazione dei coefficienti Ss e Cc in funzione della "categoria di sottosuolo"

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	$\mathbf{S}_{\mathbf{T}}$
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Variazione dei coefficienti St in funzione della "categoria topografica"

Si forniscono di seguito gli spettri ed i relativi tabulati per gli stati limite SLV, SLD ed SLO.

Spettro di risposta elastico SLV per categoria di sottosuolo C e categoria topografica Tl

Parametri indipendenti

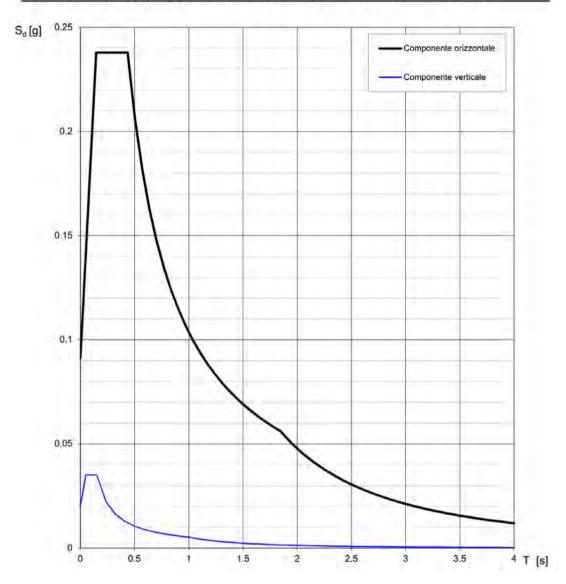
i didilicti ilidipelideliti		
STATO LIMITE	SLV	
a _g	0.141 g	
F _o	2.434	
T _C	0.293 s	
S _S	1.494	
C _C	1.575	
S _T	1.000	
q	1.000	

Parametri dipendenti

S	1.494
η	1.000
T _B	0.154 s
T _C	0.461 s
T _D	2.163 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C}/3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{\mathbf{C}} = \mathbf{C}_{\mathbf{C}} \cdot \mathbf{T}_{\mathbf{C}}^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\text{e}}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.210
Гв ←	0.154	0.512
Гс ◀	0.461	0.512
	0.542	0.435
	0.623	0.379
	0.704	0.335
	0.785	0.301
	0.866	0.273
	0.947	0.249
	1.028	0.230
	1.109	0.213
	1.191	0.198
	1.272	0.186
	1.353	0.175
	1.434	0.165
	1.515	0.156
	1.596	0.148
	1.677	0.141
	1.758	0.134
	1.839	0.128
	1.920	0.123
	2.001	0.118
	2.082	0.113
Γ _D ←	2.163	0.109
	2.250	0.101
	2.338	0.093
	2.425	0.087
	2.513	0.081
	2.600	0.076
	2.688	0.071
	2.775	0.066
	2.863	0.062
	2.950	0.059
	3.038	0.055
	3.125	0.052
	3.213	0.049
	3.300	0.047
	3.388	0.044
	3.475	0.042
	3.563	0.040
	3.650	0.038
	3.738	0.037
	3.825	0.035
	3.913	0.033
	4.000	0.032

Spettro di risposta elastico SLD per categoria di sottosuolo C e categoria topografica Tl

Parametri indipendenti

r arametri marpenaenti			
STATO LIMITE	SLD		
a _g	0.061 g		
F _o	2.610		
T _C *	0.269 s		
S _S	1.500		
C _C S _τ	1.619		
S _T	1.000		
q	1.000		

Parametri dipendenti

S	1.500
η	1.000
T _B	0.145 s
T _C	0.436 s
T _D	1.843 s

Espressioni dei parametri dipendenti

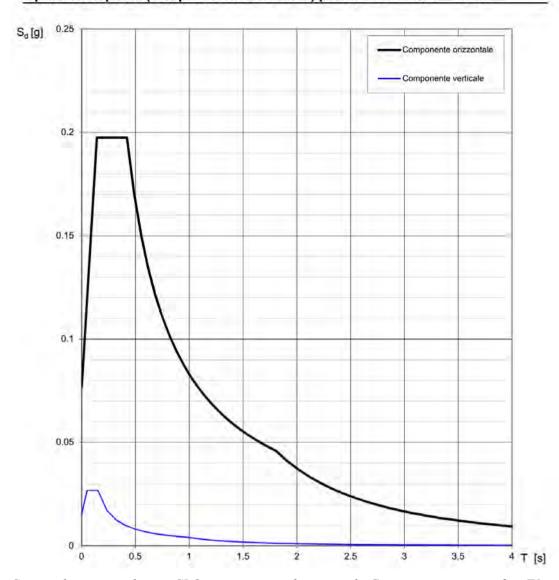
$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C} \, / \, 3 \tag{NTC-07 Eq. 3.2.8} \label{eq:tbc}$$

$$T_{C} = C_{C} \cdot T_{C}^{*} \tag{NTC-07 Eq. 3.2.7} \label{eq:ntc-07}$$

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

unt	i dello spetti	o ui risposia
	T [s]	Se [g]
	0.000	0.091
в ←	0.145	0.238
c ←	0.436	0.238
	0.503	0.206
	0.570	0.182
	0.637	0.163
	0.704	0.147
	0.771	0.134
	0.838	0.124
	0.905	0.115
	0.972	0.107
	1.039	0.100
	1.106	0.094
	1.173	0.088
	1.240	0.084
	1.307	0.079
	1.374	0.075
	1.441	0.072
	1.508	0.069
	1.575	0.066
	1.642	0.063
	1.709	0.061
	1.776	0.058
ր ←	1.843	0.056
	1.946	0.050
	2.048	0.046
	2.151	0.041
	2.254	0.038
	2.357	0.034
	2.459	0.032
	2.562	0.029
	2.665	0.027
	2.767	0.025
	2.870	0.023
	2.973	0.022
	3.076	0.020
	3.178	0.019
	3.281	0.018
	3.384	0.017
	3.486	0.016
	3.589	0.015
	3.692	0.014
	3.795	0.013
	3.897	0.013
	4.000	0.012

Spettro di risposta elastico SLO per categoria di sottosuolo C e categoria topografica Tl

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLO

Parametri indipendenti

STATO LIMITE	SLO
a_{g}	0.051 g
F _o	2.578
T _C .	0.255 s
S _S	1.500
C _c	1.649
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.140 s
T _C	0.420 s
T _D	1.804 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \; \eta = 1/q \qquad \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)}$$

$$T_{B}=T_{C}\left/ 3\right. \tag{NTC-07 Eq. 3.2.8)}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

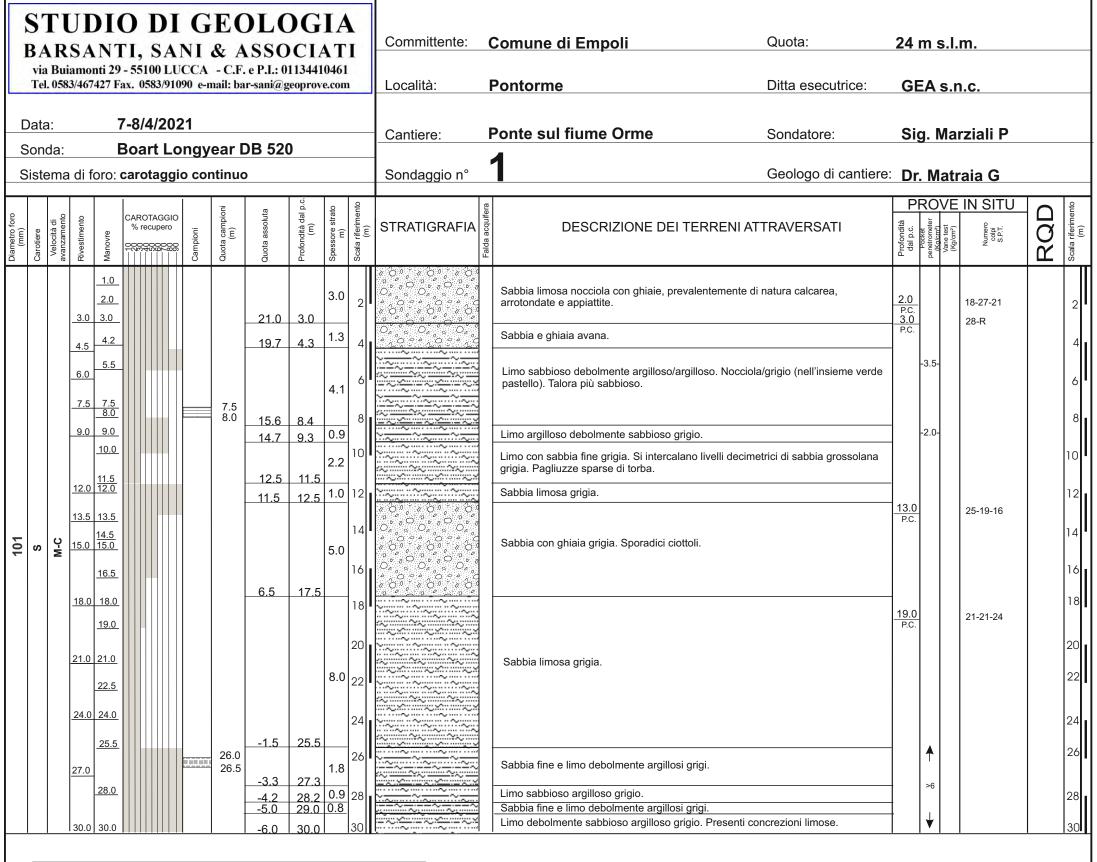
T_B

 T_D

	T [s]	Se [g]
	0.000	0.077
•	0.140	0.197
•	0.420	0.197
	0.486	0.171
	0.552	0.150
	0.618	0.134
	0.684	0.121
	0.750	0.111
	0.816	0.102
	0.882	0.094
	0.947	0.088
	1.013	0.082
	1.079	0.077
	1.145	0.072
	1.211	0.068
	1.277	0.065
	1.343	0.062
	1.409	0.059
	1.475	0.056
	1.541	0.054
	1.607	0.052
	1.672	0.050
	1.738	0.048
•	1.804	0.046
	1.909	0.041
	2.013	0.037
	2.118	0.033
	2.222	0.030
	2.327	0.028
	2.432	0.025
	2.536	0.023
	2.641	0.021
	2.745	0.020
	2.850	0.018
	2.954	0.017
	3.059	0.016
	3.164	0.015
	3.268	0.014
	3.373	0.013
	3.477	0.012
	3.582	0.012
	3.686	0.011
	3.791	0.010
	3.895	0.010
	4.000	0.009

Lucca, 20/05/21

STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI Dott. Geol. Pietro Barsanti


STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI

via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DEL NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI

ALL. Nº 1 - LOG STRATIGRAFICO SONDAGGI



P.C.=punta chiusa $V = vidia$

MISURA FALDA ACQUIFERA (m. dal p.c.)								
Data	Prof. foro	Quota rivest.	Liv. acqua					
8-4-21	28	27	-0.8					

NOTE

- n° 6 cassette catalogatrici
- n° 4 SPT
- Attrezzatura foro: tubo per prova down hole

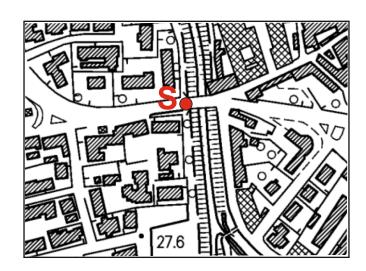
Panoramica dell'ubicazione del sondaggio S1

Cassa nº 1: da 0 a 5

Cassa nº 2: da 5 a 10 m

Cassa n° 3: da 10 a 15 m

Cassa nº 4: da 15 a 20 m


Cassa n° 5 : da 20 a 25 m

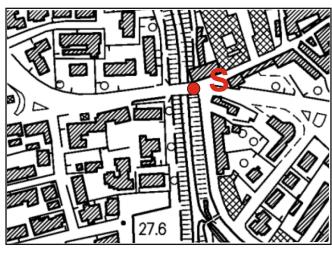
Cassa nº 6 : da 25 a 30 m

STUDIO DI GEOLOGIA Committente: Quota: Spalla ponte Comune di Empoli BARSANTI, SANI & ASSOCIATI via Buiamonti 29 - 55100 LUCCA - C.F. e P.I.: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com Ditta esecutrice: GEA s.n.c. Località: **Pontorme** 6/4/2021 Data: Ponte sul fiume Orme Sig. Marziali P Cantiere: Sondatore: **Boart Longyear DB 520** Sonda: Sistema di foro: carotaggio continuo inclinato circa 20° Geologo di cantiere: Dr. Matraia G Sondaggio n° Spalla sinistra ponte PROVE IN SITU QD CAROTAGGIO % recupero ndità dal (m) Scala riferime (m) sore stra m) **STRATIGRAFIA** DESCRIZIONE DEI TERRENI ATTRAVERSATI (m) 2 Spalla del ponte: 20 cm di muro faccia vista + calcestruzzo costituito da 1.0 2.2 ghiaia grossolana, mediamente 3-4 cm, e malta cementizia. 1.5 2.2 2.5 0.5 Ciottoli. တ 3.0 3.0 3.5 4.0 Sabbia limosa nocciola con ghiaie sparse arrotondate ed appiattite. 4.5 5.0 5.5 6.0

CAMPIONI	INDISTURBATI:	Velocità di avanzamento: B = bassa			
Shelby	Denison	M = media			
		A = alta			
Osterberg	Percussione	C = continua			
mil mil		D = discontinua			
		Carotiere:			
Mazier	Disturbato	S = semplice			
		WL=Wire Line			
l		T6 =Carotiere doppio			
	0.07	T6S =Carotiere doppio			
	SPT:	Corona:			
	P.A.=punta aperta P.C.=punta chiusa	D = diamante			
	r.cpunta chiusa	V = vidia			

NOTE

- n° 2 cassette catalogatrici
- Attrezzatura foro: Foro cementato


Cassa 1 da 0 a 5 m

Cassa 2 da 5 a 6 m

	BA	R	SA	NI	TI,	SA	NI	& A	OL(ASSC	CL	AT	I	Committente:	Comune di Empoli	Quota:	Sp	oalla	а рс	onte		
									. e P.J.: 0 ar-sani@g				Località:	Pontorme	Ditta esecutrice:	GE	EA s	s.n.c	c.		
	Data Son	a: da:			I/4/2 3oar			vear l	DB 52	0			Cantiere:	Ponte sul fiume Orme	Sondatore:	Si	g. N	larz	ziali P		
5	Siste	ema	a di f						o inclin		irca 2	20°	Sondaggio n°	Spalla destra ponte	Geologo di cantiere	e: Dr	. M	atra	ia G		
Diametro foro (mm)	Carotiere	Velocità di avanzamento	Rivestimento	Manovre	CAROT.	upero	inoi	Quota campioni (m)	Quota assoluta	Profondità dal p.c. (m)	Spessore strato m)	Scala riferimento (m)	STRATIGRAFIA	DESCRIZIONE DEI TERREI	NI ATTRAVERSATI	Profondità dal p.c.	Pocket penetrometer (Kg/cm²)		N SITU codpi S.P.T.	RQD	Scala riferimento (m)
			1.5	0.2 0.5 1.0 1.5 2.0						22	2.2]		Spalla del ponte: 20 cm di muro faccia vista + ca ghiaia grossolana, mediamente 3-4 cm, e malta d							1
101	S	B-D		2.5 3.0 3.5 4.0 4.5 5.0						5.0		3 4		Riempimento sciolto di ciottolame poligenico di d	imensioni variabili.						3 4
										V.0		6	O. A. M. S.								6

NOTE

- n° 1 cassette catalogatrici
- Attrezzatura foro: Foro cementato

STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI

via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DEL NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI

ALL. Nº 2 - CERTIFICATI ANALISI DI LABORATORIO

Certificati di Prova n. 760-764/2021

Montelupo Fiorentino, lì 12/05/2021

SETTORE: meccanica delle terre

V.A. n. 078/21 del 16/04/21

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

DATA ESECUZIONE PROVE: 19/04/21 - 10/05/21

CAMPIONI:

S1C1 profondità 8.0 - 8.5 m

Prove eseguite

- 1 Contenuto d'acqua (UNI CEN ISO/TS 17892-1)
- 2 Peso di volume (UNI CEN ISO/TS 17892-2)
- 3 Limiti di Atterberg (UNI CEN ISO/TS 17892-12)
- 4 Analisi granulometrica per setacciatura: per via umida (UNI CEN ISO/TS 17892-4)
- 5 Analisi granulometrica della frazione fine: metodo del densimetro (UNI CEN ISO/TS 17892-4)
- 6 Prova di compressione con espansione laterale libera (UNI CEN ISO/TS 17892-7)
- 7 Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)
- 8 Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

Lo sperimentatore Geol. Lorenzo Gambassi EL TECMA INC.

Il direttore del Laboratorio Geol. Michele Caloni

Michele Colon

CAMPIONE S1C1 profondità 8.0 - 8.5 m Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. V.A. n. 078/21 del 16/04/21

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Data apertura campione: 19/04/21

Descrizione del campione

Campione indisturbato prelevato con campionatore Shelby di diametro di 88.9 mm da sondaggio eseguito a rotazione a carotaggio continuo

0 - 56 cm: limo argilloso debolmente/mediamente consistente con sporadici elementi litici colore grigio chiaro/grigio oliva chiaro prove eseguite: umidità naturale, peso di volume, limiti, granulometria, E.L.L., edometria e taglio

Classe e grado di qualità (sec. A.G.I.) Campione indisturbato Q-5

> Lo sperimentatore Geol. Lorenzo Gambassi

Il direttore del Laboratorio Geol. Michele Caloni Michele Caloni

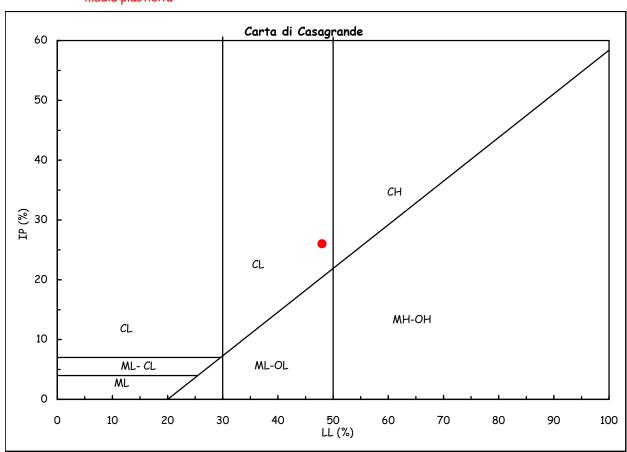
CAMPIONE S1C1 profondità 8.0 - 8.5 m

Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Data prova: 04/05/21 - 10/05/21


Contenuto d'acqua (UNI CEN ISO/TS 17892-1) Limiti di Atterberg (UNI CEN ISO/TS 17892-12)

Contenuto d'acqua (Wn) = 27.50% Limite di liquidità (LL) = 48%

Limite di plasticità (LP) = 22% Indice di plasticità (IP) = 26%

Indice di consistenza (Ic) = 0.79 Indice di attività (Iat) = 0.76

CL = argille inorganiche di media plasticità

Classificazione UNI 10006

Gruppo: A7-6 Indice di gruppo: 16

Lo sperimentatore

Geol. Lorenzo Gambassi

Clebs Coloni

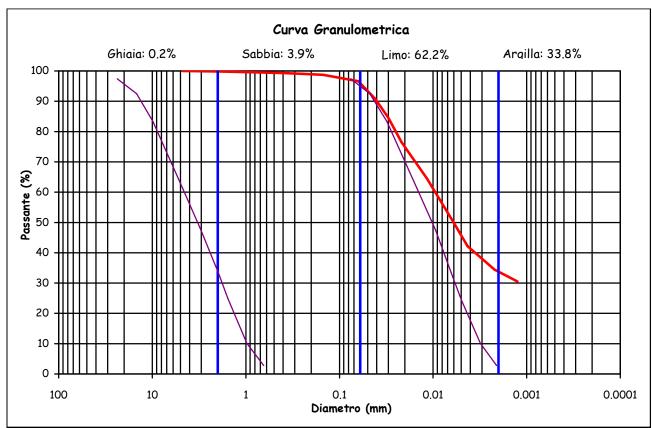
Colon

CAMPIONE S1C1 profondità 8.0 - 8.5 m

Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola


Data prova: 04/05/21 - 10/05/21

Analisi granulometrica

Setacciatura: per via umida (UNI CEN ISO/TS 17892 4)

Frazione fine: metodo del densimetro (UNI CEN ISO/TS 17892 4)

Setacci	iatura	Sedimo	entazione
Diametro (mm)	Passante (%)	Diametro (mm)	Passante (%)
4.75	100	0.0418	90.9
2	99.83	0.0301	84.6
0.850	99.60	0.0218	76.6
0.400	99.29	0.0116	64.5
0.250	99.06	0.0060	50.0
0.150	98.76	0.0043	42.2
0.063	96.61	0.0031	38.4
		0.0022	34.5
		0.0013	30.5

Definizione secondo A.G.I.:

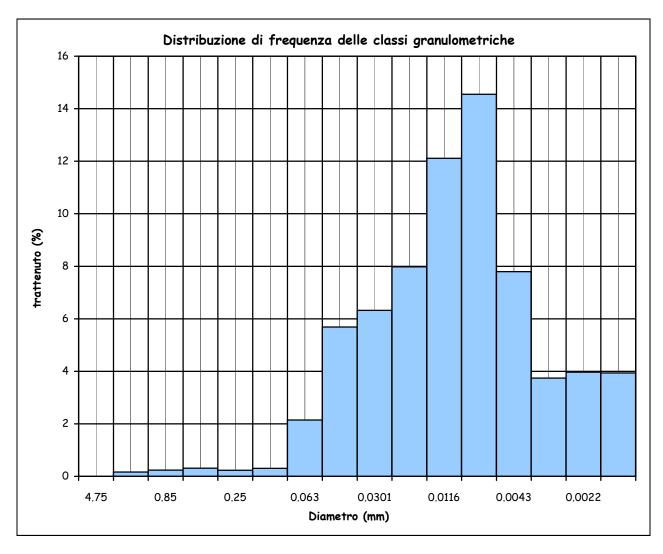
Limo con argilla

Fusi granulometrici critici nei confronti della liquefazione (Tsuchida, 1970)

Lo sperimentatore

Geol. Lorenza Gambassi

Il direttore del Laboratorio Geol, Michele Caloni



CAMPIONE S1C1 profondità 8.0 - 8.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021 V.A. n. 078/21 del 16/04/21 Data prova: 04/05/21 - 10/05/21

Analisi granulometrica

Coefficiente di uniformità (Cu) = -

Coefficiente di curvatura (Cc) = -

Mediana 0.0060

Moda 0.0060

Lo sperimentatore Geol. Lorenzo Gambassi Deledo Joneo

Il direttore del Laboratorio Geol. Michele Caloni

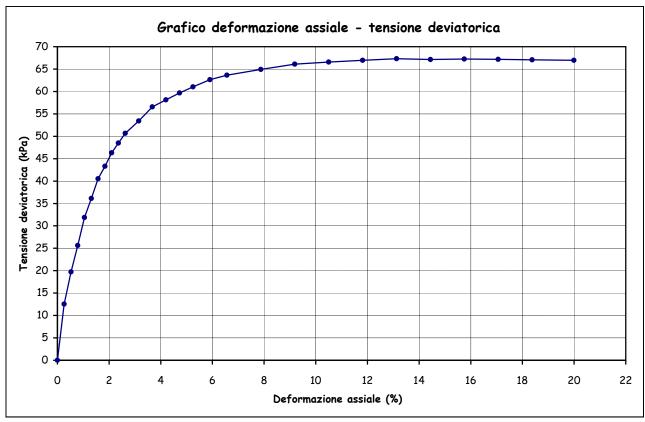
CAMPIONE S1C1 profondità 8.0 - 8.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021

V.A. n. 078/21 del 16/04/21


Data prova: 04/05/21 - 06/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1)

Peso di volume (UNI CEN ISO/TS 17892-2)

Prova di compressione con espansione laterale libera (UNI CEN ISO/TS 17892-7)

Peso di volur	ne naturale (kN/m³)	19.1		Sigma a rottura (kPa)	67.3
Peso di volur	ne secco (kN/m³)	15.0		Coesione non drenata (kP	a) 33.7
Contenuto d	'acqua (%)	27.54		Modulo elastico	4774
Vel. def. (mr	n/min)	1.27		tangente iniziale (kPa)	4//4
3	σ	ε	σ	3	σ
(%)	(kPa)	(%)	(kPa)	(%)	kPa)
0.26	12.5	2.63	50.7	9.19	66.1
0.53	19.7	3.15	53.4	10.50	66.6
0.79	25.6	3.68	56.6	11.81	67.0
1.05	31.9	4.20	58.1	13.13	67.3
1.31	36.1	4.73	59.7	14.44	67.1
1.58	40.5	5.25	61.0	15.75	67.3
1.84	43.3	5.91	62.6	17.06	67.2
2.10	46.3	6.56	63.7	18.38	67.1
2.36	48.5	7.88	64.9	19.99	67.0

Lo sperimentatore Geol. Lorenzo Gambassi

Il direttore del Laboratorio Geol, Mighele Caloni

CAMPIONE S1C1 profondità 8.0 - 8.5 m	Montelupo Fiorentino, lì 12/05/2021
COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.	V.A. n. 078/21 del 16/04/21
LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola	Data prova: 19/04/21 - 06/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1) Peso di volume (UNI CEN ISO/TS 17892-2)

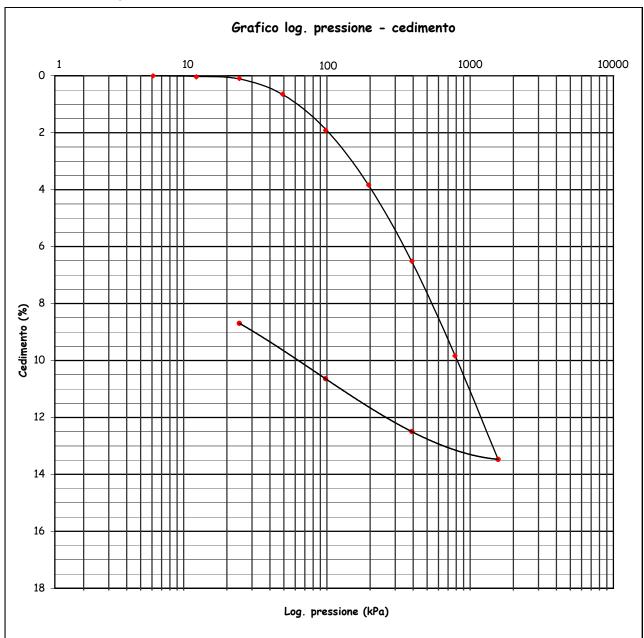
Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

	Iniziale	Finale
Altezza (mm)	19.945	18.211
Volume (cmc)	39.957	36.483
Peso di volume naturale (kN/m³)	19.3	20.4
Peso di volume secco (kN/m³)	15.1	16.5
Contenuto d'acqua (%)	27.81	23.07

Cedimento	Mv
(%)	(m^2/kN)
0.000	
0.040	0.0000655
0.095	0.0000451
0.644	0.0002243
1.918	0.0002601
3.838	0.0001961
6.518	0.0001369
9.837	0.0000848
13.472	0.0000464
12.499	0.0000083
10.644	0.0000632
8.694	0.0002656
	(%) 0.000 0.040 0.095 0.644 1.918 3.838 6.518 9.837 13.472 12.499 10.644

Lo sperimentatore Geol. Lorenzo Gambassi GETECHIA P. C.

Il direttore del Laboratorio Geol. Michele Caloni



CAMPIONE S1C1 profondità 8.0 - 8.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021 V.A. n. 078/21 del 16/04/21 Data prova: 19/04/21 - 06/05/21

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Lo sperimentatore

E Programme

Il direttore del Laboratorio Geol. Michele Caloni Michele Coloni

CAMPIONE S1C1 profondità 8.0 - 8.5 m Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. V.A. n. 078/21 del 16/04/21 LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Data prova: 19/04/21 - 06/05/21

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Cedimento in funzione del tempo

carico da 49	a 97.9 kPa	carico da 97.	9 a 195.8 kPa
tempo	Cedimento	tempo	Cedimento
(minuti)	(10 ⁻³ mm)	(minuti)	(10^{-3} mm)
0.10	230.00	0.10	537.00
0.13	233.00	0.13	540.00
0.17	236.00	0.17	542.00
0.20	238.00	0.20	544.00
0.25	241.00	0.25	547.00
0.33	244.00	0.33	551.00
0.50	249.00	0.50	557.00
0.75	256.00	0.75	566.00
1.00	261.00	1.00	572.00
1.50	269.00	1.50	584.00
2.00	276.00	2.00	593.00
3.00	287.00	3.00	609.00
4.00	296.00	4.00	623.00
6.00	310.00	6.00	646.00
8.00	321.00	8.00	665.00
11.50	338.00	11.50	692.00
15.00	351.00	15.00	713.00
22.50	370.00	22.50	748.00
30.00	384.00	30.00	769.00
45.00	401.00	45.00	796.00
60.00	411.00	60.00	812.00
90.00	423.00	90.00	828.00
120.00	430.00	120.00	838.00
180.00	438.00	180.00	850.00
240.00	444.00	240.00	858.00
360.00	453.00	360.00	869.00
480.00	458.00	480.00	877.00
720.00	466.00	720.00	886.00
960.00	468.00	960.00	891.00
1200.00	470.00	1200.00	895.00
1410.00	471.00	1410.00	897.00

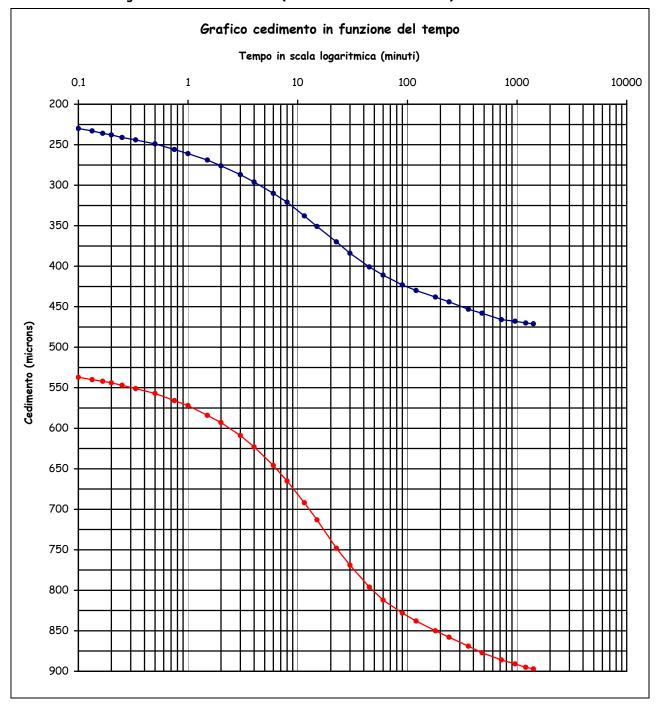
Lo sperimentatore

Geol. Lorenzo Gambassi

ETTECHNO POLICE

Il direttore del Laboratorio Geol. Michele Caloni

) Who a wow


CAMPIONE S1C1 profondità 8.0 - 8.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

V.A. n. 078/21 del 16/04/21 nola Data prova: 19/04/21 - 06/05/21

Montelupo Fiorentino, lì 12/05/2021

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Lo sperimentatore Geol. Lorenzo Gambassi EFTECHOS TO POWE MANAGEMENT

Il direttore del Laboratorio Geol. Michele Caloni Michele Coloni

CAMPIONE 51C1 profondità 8.0 - 8.5 m	Montelupo Fiorentino, lì 12/05/2021
COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.	V.A. n. 078/21 del 16/04/21
LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola	Data prova: 20/04/21 - 03/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1)
Peso di volume (UNI CEN ISO/TS 17892-2)

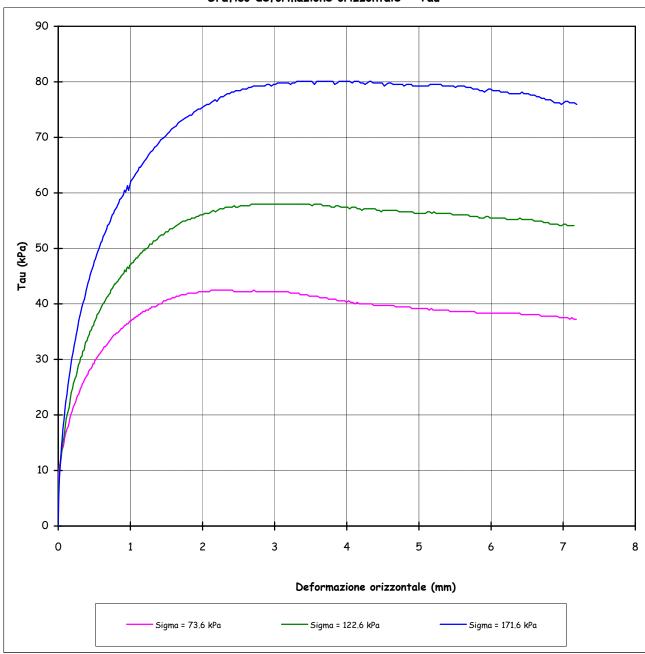
Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (kN/m³)	18.9	18.9	19.0
Peso di volume umido finale (kN/m³)	19.9	20.2	20.7
Peso di volume secco iniziale (kN/m³)	14.7	14.7	14.7
Peso di volume secco finale (kN/m³)	15.5	15.7	16.1
Contenuto d'acqua iniziale (%)	28.55	28.68	28.73
Contenuto d'acqua finale (%)	28.15	28.42	28.55
Velocità di deformazione (mm/min.)	0.0030	0.0030	0.0030
Sigma (kPa)	73.6	122.6	171.6
Tau a rottura (kPa)	42.5	58.0	80.1

Provino 1 Provino 2		Provino	3		
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(kPa)	(mm)	(kPa)	(mm)	(kPa)
0.04	12.7	0.04	12.1	0.05	15.7
0.08	15.2	0.10	18.2	0.12	23.7
0.14	17.9	0.17	23.2	0.21	31.4
0.20	21.2	0.25	27.0	0.32	38.6
0.27	23.4	0.34	31.4	0.43	44.4
0.35	25.9	0.46	35.3	0.57	50.0
0.46	28.4	0.57	38.6	0.70	54.4
0.55	30.6	0.70	41.7	0.87	59.1
0.67	32.6	0.84	44.4	1.04	62.7
0.79	34.5	0.99	46.9	1.23	66.3
0.92	36.1	1.17	49.4	1.46	69.9
1.07	37.5	1.34	51.3	1.66	72.6
1.22	38.9	1.55	53.5	1.88	74.6
1.37	39.7	1.73	54.9	2.14	76.5
1.56	40.8	1.97	56.0	2.40	78.1
1.74	41.7	2.18	56.6	2.71	79.3
1.92	41.9	2.44	57.7	2.99	79.5
2.12	42.5	2.68	58.0	3.31	80.1
2.33	42.5	2.93	58.0	3.61	80.1
2.53	42.2	3.19	58.0	3.93	80.1
2.71	42.5	3.43	58.0	4.25	79.5

Lo sperimentatore Geol. Lorenzo, Gambassi

Il direttore del Laboratorio Geol. Michele Caloni


CAMPIONE S1C1 profondità 8.0 - 8.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Montelupo Fiorentino, lì 12/05/2021

V.A. n. 078/21 del 16/04/21 Data prova: 20/04/21 - 03/05/21

Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

Grafico deformazione orizzontale - Tau

Lo sperimentatore Geal. Lorenzo Gambassi Delles Janean

Il direttore del Laboratorio Geol. Michele Caloni COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. Montelupo Fiorentino, lì 12/05/2021

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola V.A. n. 078/21 del 16/04/21

Tabella riassuntiva Certificati di Prova n. 760-764/2021

CAMPIONE	S1C1
Profondità metri	8.0 - 8.5
Limiti di Atterberg	
Umidità naturale (%)	27.50
Limite liquido (%)	48
Limite plastico (%)	22
Indice di plasticità (%)	26
Indice di consistenza	0.79
Indice di attività	0.76
Classificaz. Casagrande	CL
Granulometria	
Ghiaia (%)	0.2
Sabbia (%)	3.9
Limo (%)	62.2
Argilla (%)	33.8
Classificazione UNI 10006	
Gruppo	A7-6
Indice di gruppo	16
Parametri fisici	
Peso volume naturale (kN/m³)	19.0
Peso volume secco (kN/m³)	14.8
Prova di Compressione E.L.L.	
Coesione non drenata, Cu (kPa)	33.7
Modulo elastico tangente iniziale, Eti (kPa)	4774
Prova di taglio diretto	
Coesione, C' (kPa)	13.2
Angolo di resistenza al taglio, ¢' (°)	21.0
Prova edometrica	
Rapporto di ricompressione, Rr	0.02054
Rapporto di compressione, Rc	0.11551
Rapporto di rigonfiamento, Rs	0.03160
Pressione di preconsolidazione, σ'_{vmax} (kPa)	114
Cv (cm²/sec)	2.90E-04
K (cm/sec)	6.80E-09
Cv (cm²/sec)	3.00E-04
K (cm/sec)	4.91E-09

Certificati di Prova n. 765-769/2021

Montelupo Fiorentino, lì 12/05/2021

SETTORE: meccanica delle terre

V.A. n. 078/21 del 16/04/21

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

DATA ESECUZIONE PROVE: 19/04/21 - 10/05/21

CAMPIONI:

S1C2 profondità 26.0 - 26.5 m

Prove eseguite

- 1 Contenuto d'acqua (UNI CEN ISO/TS 17892-1)
- 2 Peso di volume (UNI CEN ISO/TS 17892-2)
- 3 Limiti di Atterberg (UNI CEN ISO/TS 17892-12)
- 4 Analisi granulometrica per setacciatura: per via umida (UNI CEN ISO/TS 17892-4)
- 5 Analisi granulometrica della frazione fine: metodo del densimetro (UNI CEN ISO/TS 17892-4)
- 6 Prova di compressione con espansione laterale libera (UNI CEN ISO/TS 17892-7)
- 7 Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)
- 8 Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

Lo sperimentatore Geol. Lorenzo Gambassi CETECMAS TO C

Il direttore del Laboratorio Geol. Michele Caloni

Hidele Colon

CAMPIONE S1C2 profondità 26.0 - 26.5 m

Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Data apertura campione: 19/04/21

Descrizione del campione

Campione indisturbato prelevato con campionatore Shelby di diametro di 88.9 mm da sondaggio eseguito a rotazione a carotaggio continuo

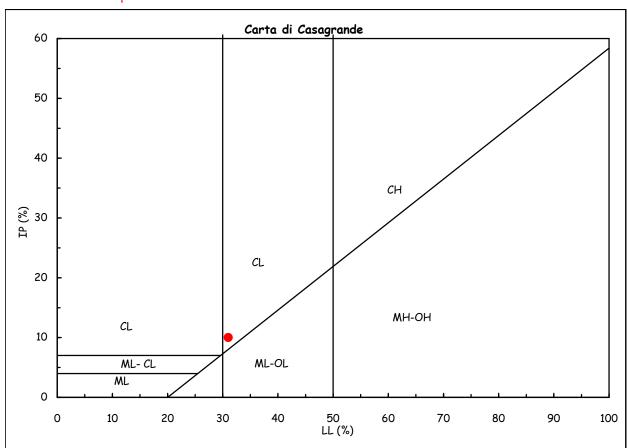
0 - 53 cm: limo argilloso sabbioso con sporadici elementi litici colore grigio bluastro a tratti oliva prove eseguite: umidità naturale, peso di volume, limiti, granulometria, E.L.L., edometria e taglio

Classe e grado di qualità (sec. A.G.I.) Campione indisturbato Q-5

> Lo sperimentatore Geol. Lorenzo Gambassi

Il direttore del Laboratorio Geol. Michele Caloni

CAMPIONE S1C2 profondità 26.0 - 26.5 mMontelupo Fiorentino, lì 12/05/2021COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.V.A. n. 078/21 del 16/04/21LOCALITA': Ponte sul fiume Orme SS 67 Tosco RomagnolaData prova: 05/05/21 - 10/05/21


Contenuto d'acqua (UNI CEN ISO/TS 17892-1) Limiti di Atterberg (UNI CEN ISO/TS 17892-12)

Contenuto d'acqua (Wn) = 14.68% Limite di liquidità (LL) = 31%

Limite di plasticità (LP) = 21% Indice di plasticità (IP) = 10%

Indice di consistenza (Ic) = 1.63 Indice di attività (Iat) = 0.35

CL = argille inorganiche di media plasticità

Classificazione UNI 10006

Gruppo: A4 Indice di gruppo: 8

Lo sperimentatore
Geol. Lorenzo Gambassi

Clebs Janes Geol. Michele Caloni

Clebs Janes Geol. Michele Caloni

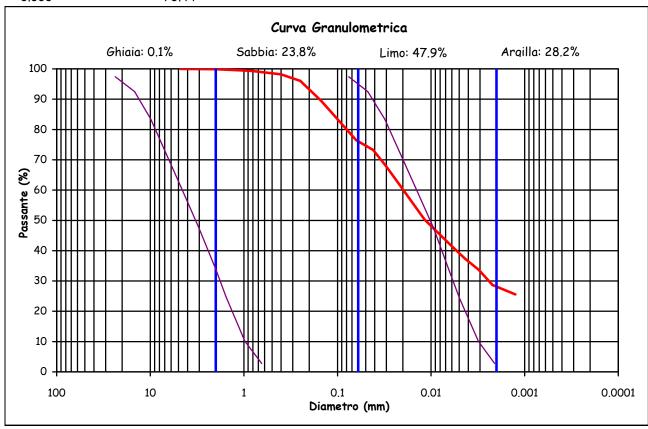
CAMPIONE S1C2 profondità 26.0 - 26.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021

V.A. n. 078/21 del 16/04/21


Data prova: 05/05/21 - 10/05/21

Analisi granulometrica

Setacciatura: per via umida (UNI CEN ISO/TS 17892 4)

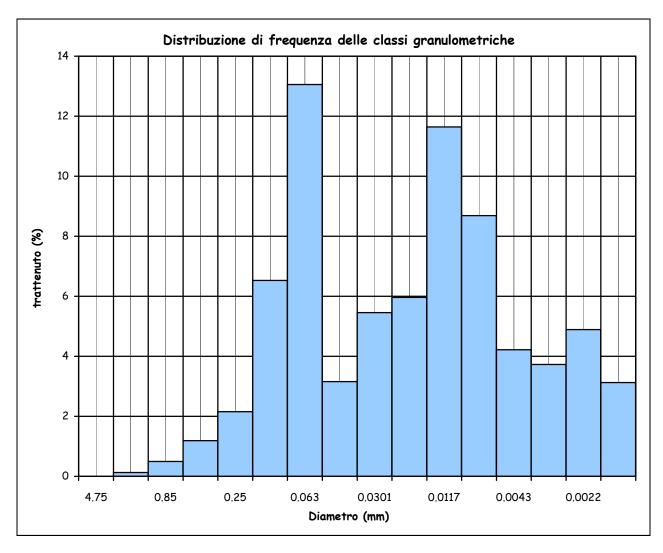
Frazione fine: metodo del densimetro (UNI CEN ISO/TS 17892 4)

Setacciatura		Sedimo	entazione
Diametro (mm)	Passante (%)	Diametro (mm)	Passante (%)
37.5	100.00	0.0417	73.3
19	100.00	0.0301	67.8
9.5	100.00	0.0218	61.9
4.75	100.00	0.0117	50.2
2	99.87	0.0060	41.5
0.850	99.37	0.0043	37.3
0.400	98.18	0.0031	33.6
0.250	96.03	0.0022	28.7
0.150	89.50	0.0013	25.6
0.063	76.44		

Definizione secondo A.G.I.: Limo con argilla sabbioso

Lo sperimentatore Geoj. Lorenza Gampassi Prove Marie

Fusi granulometrici critici nei confronti della liquefazione (Tsuchida, 1970)


Il direttore del Laboratorio Geol, Michele Caloni

CAMPIONE S1C2 profondità 26.0 - 26.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Montelupo Fiorentino, lì 12/05/2021 V.A. n. 078/21 del 16/04/21 Data prova: 05/05/21 - 10/05/21

Analisi granulometrica

Coefficiente di uniformità (Cu) =

Coefficiente di curvatura (Cc) = -

Mediana 0.0116

Moda 0.0630

Lo sperimentatore Geol. Lorenzo Gambassi

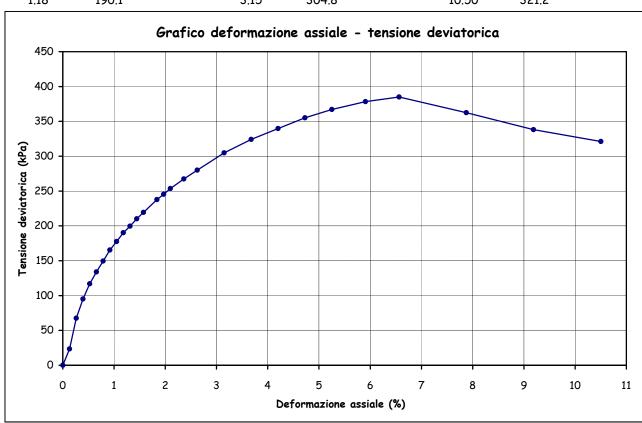
Il direttore del Laboratorio Geol. Michele Caloni

CAMPIONE S1C2 profondità 26.0 - 26.5 m

Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola


Data prova: 04/05/21 - 06/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1)

Peso di volume (UNI CEN ISO/TS 17892-2)

Prova di compressione con espansione laterale libera (UNI CEN ISO/TS 17892-7)

Peso di volu	me naturale (kN/m³)	21.2		Sigma a rottura (kPa)	385.0
Peso di volu	me secco (kN/m³)	18.5		Coesione non drenata (kPa)	192.5
Contenuto d	l'acqua (%)	14.54		Modulo elastico	22/07
Vel. def. (mi	m/min)	1.27		tangente iniziale (kPa)	33687
3	σ	ε	σ	ε σ	
(%)	(kPa)	(%)	(kPa)	(%) (kPa)	
0.13	23.4	1.31	199.6	3.68 324.2	
0.26	67.6	1.44	210.2	4.20 339.7	
0.39	95.1	1.58	219.3	4.73 355.1	
0.53	116.9	1.84	237.8	5.25 367.0	
0.66	133.9	1.97	245.3	5.91 378.3	
0.79	149.6	2.10	253.5	6.56 385.0	
0.92	165.3	2.36	267.4	7.88 362.5	
1.05	177.5	2.63	280.0	9.19 338.1	
1.18	190.1	3.15	304.8	10.50 321.2	

Lo sperimentatore Geol. Lorenzo Gambassi Delles Janes

Il direttore del Laboratorio Geol, Michele Caloni

CAMPIONE S1C2 profondità 26.0 - 26.5 m	Montelupo Fiorentino, lì 12/05/2021
COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.	V.A. n. 078/21 del 16/04/21
LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola	Data prova: 20/04/21 - 06/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1)

Peso di volume (UNI CEN ISO/TS 17892-2)

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

	Iniziale	Finale
Altezza (mm)	19.921	18.753
Volume (cmc)	40.240	37.881
Peso di volume naturale (kN/m³)	20.5	21.7
Peso di volume secco (kN/m³)	17.7	18.8
Contenuto d'acqua (%)	15.91	15.36

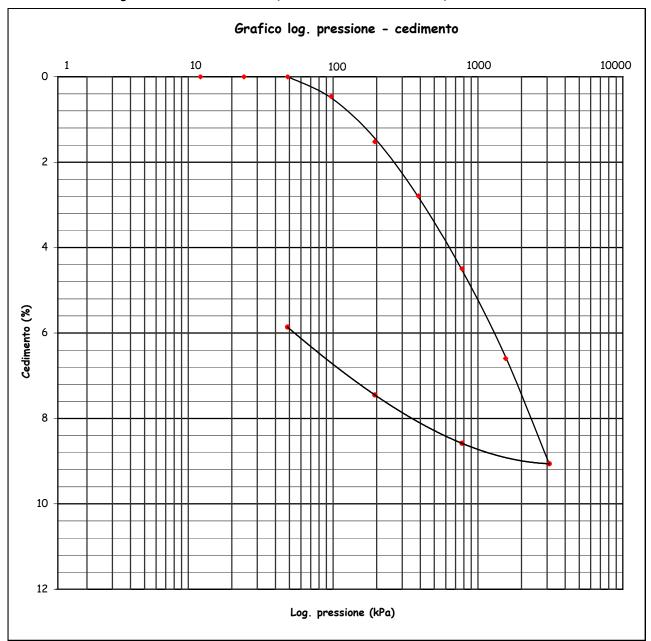
Pressione	Cedimento	Mv
(kPa)	(%)	(m^2/kN)
12.1	0.000	
24.3	0.000	0.0000000
48.6	0.000	0.0000000
97.1	0.462	0.0000951
194.2	1.521	0.0001091
388.4	2.791	0.0000654
776.8	4.498	0.0000439
1553.6	6.596	0.0000270
3107.2	9.061	0.0000159
776.8	8.584	0.0000020
194.2	7.449	0.0000195
48.6	5.863	0.0001089

Lo sperimentatore Geol, Lorenzo Gambassi GETECHIA, P.C.

Il direttore del Laboratorio Geol. Michele Caloni

CAMPIONE 51C2 profondità 26.0 - 26.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.


LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021

V.A. n. 078/21 del 16/04/21

Data prova: 20/04/21 - 06/05/21

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Lo sperimentatore

assi

GETECHNO. TO

Il direttore del Laboratorio

Geol. Michele Caloni Michele Colm

CAMPIONE S1C2 profondità 26.0 - 26.5 m Montelupo Fiorentino, lì 12/05/2021

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. V.A. n. 078/21 del 16/04/21 LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Data prova: 20/04/21 - 06/05/21

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Cedimento in funzione del tempo

carico da 97.	1 a 194 2 kPa	carico da 19	4.2 a 388.4 kPa
tempo	Cedimento	tempo	Cedimento
(minuti)	(10 ⁻³ mm)	(minuti)	(10 ⁻³ mm)
0.10	318.00	0.10	574.00
0.13	325.00	0.13	580.00
0.17	330.00	0.17	585.00
0.20	335.00	0.20	588.00
0.25	340.00	0.25	593.00
0.33	345.00	0.33	598.00
0.50	353.00	0.50	606.00
0.75	360.00	0.75	615.00
1.00	366.00	1.00	622.00
1.50	373.00	1.50	632.00
2.00	379.00	2.00	640.00
3.00	387.00	3.00	652.00
4.00	392.00	4.00	660.00
6.00	399.00	6.00	672.00
8.00	403.00	8.00	680.00
11.50	408.00	11.50	690.00
15.00	412.00	15.00	695.00
22.50	416.00	22.50	703.00
30.00	419.00	30.00	708.00
45.00	422.00	45.00	713.00
60.00	425.00	60.00	716.00
90.00	428.00	90.00	721.00
120.00	430.00	120.00	724.00
180.00	433.00	180.00	728.00
240.00	436.00	240.00	731.00
360.00	439.00	360.00	736.00
480.00	441.00	480.00	740.00
720.00	443.00	720.00	743.00
960.00	445.00	960.00	744.00
1200.00	447.00	1200.00	745.00
1410.00	448.00	1410.00	746.00

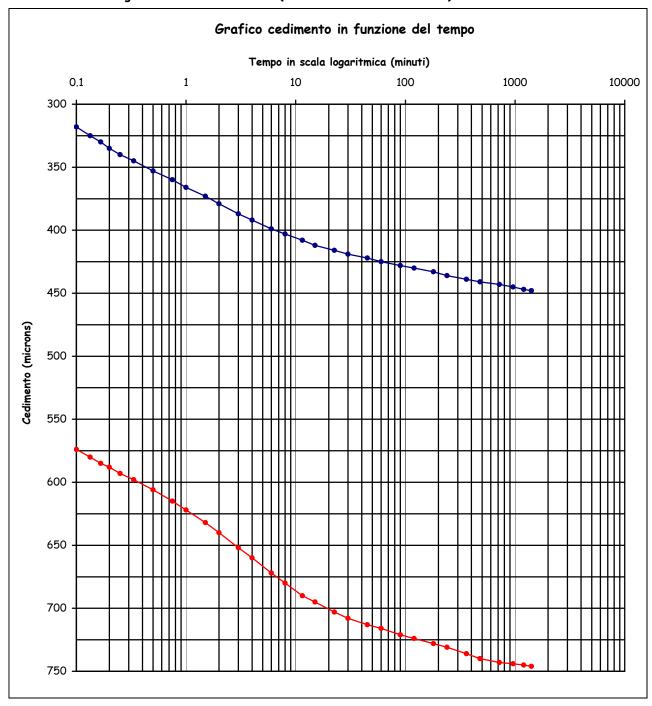
Lo sperimentatore

ambassi

GETECHAS TO

Il direttore del Laboratorio

Geol. Michele Caloni Urbele Gelm


CAMPIONE S1C2 profondità 26.0 - 26.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L.

.OCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola

Montelupo Fiorentino, lì 12/05/2021 V.A. n. 078/21 del 16/04/21 Data prova: 20/04/21 - 06/05/21

Prova edometrica a gradini di carico costante (UNI CEN ISO/TS 17892-5)

Lo sperimentatore Geol. Lorenzo Gambassi

Il direttore del Laboratorio Geol. Michele Caloni Hishele Colon

CAMPIONE S1C2 profondità 26.0 - 26.5 m	Montelupo Fiorentino, lì 12/05/2021
COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L	. V.A. n. 078/21 del 16/04/21
LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romo	gnola Data prova: 20/04/21 - 03/05/21

Contenuto d'acqua (UNI CEN ISO/TS 17892-1)
Peso di volume (UNI CEN ISO/TS 17892-2)

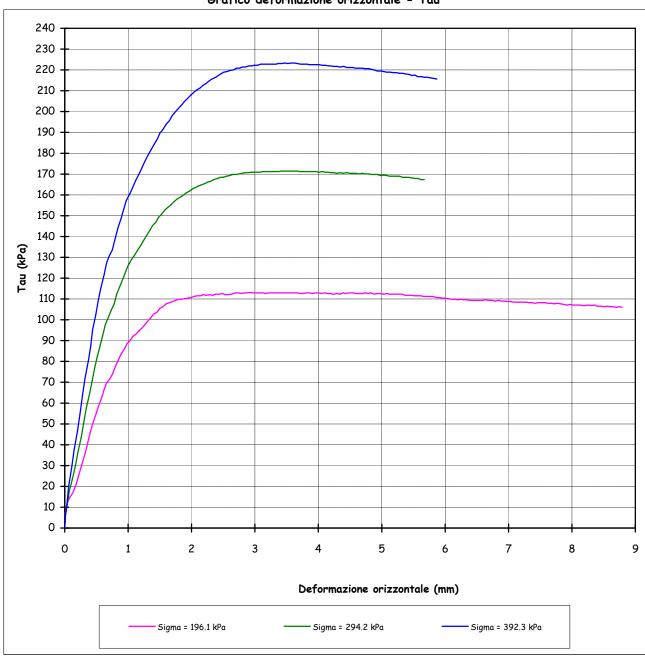
Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (kN/m³)	20.5	20.6	20.6
Peso di volume umido finale (kN/m³)	21.9	22.3	22.6
Peso di volume secco iniziale (kN/m³)	17.6	17.6	17.6
Peso di volume secco finale (kN/m³)	18.5	18.8	18.9
Contenuto d'acqua iniziale (%)	16.60	17.20	17.29
Contenuto d'acqua finale (%)	18.61	19.12	19.53
Velocità di deformazione (mm/min.)	0.0040	0.0040	0.0040
Sigma (kPa)	196.1	294.2	392.3
Tau a rottura (kPa)	113.2	171.5	223.3

Provino 1 Provino 2		2	Provino 3		
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(kPa)	(mm)	(kPa)	(mm)	(kPa)
0.04	12.2	0.07	17.5	0.06	19.8
0.13	17.0	0.12	23.6	0.15	37.8
0.18	20.9	0.21	36.7	0.24	54.7
0.27	30.6	0.34	57.7	0.32	72.1
0.36	40.8	0.43	70.2	0.44	95.3
0.49	54.4	0.56	87.8	0.57	115.4
0.62	66.6	0.73	104.4	0.75	133.5
0.75	73.8	0.87	116.2	0.89	148.9
0.94	85.9	1.10	131.1	1.07	163.5
1.07	92.0	1.29	140.4	1.31	178.9
1.26	97.5	1.48	149.2	1.50	189.6
1.46	103.8	1.72	156.6	1.74	199.7
1.70	108.8	1.97	161.8	1.99	208.0
1.89	110.1	2.21	165.4	2.27	214.6
2.14	111.5	2.50	168.4	2.51	218.9
2.38	112.3	2.80	170.4	2.85	221.4
2.63	112.3	3.08	170.9	3.14	222.8
2.93	113.2	3.42	171.5	3.47	223.3
3.22	112.9	3.77	171.2	3.82	222.8
3.46	112.9	4.06	171.2	4.11	222.2
3.75	112.6	4.39	170.4	4.45	221.1

Lo sperimentatore Geol. Lorenzo Gambassi

Il direttore del Laboratorio Geol. Michele Caloni


CAMPIONE 51C2 profondità 26.0 - 26.5 m

COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola Montelupo Fiorentino, lì 12/05/2021

V.A. n. 078/21 del 16/04/21 Data prova: 20/04/21 - 03/05/21

Prova di taglio diretto (UNI CEN ISO/TS 17892-10)

Grafico deformazione orizzontale - Tau

Lo sperimentatore

Geal. Lorenzo Gambassi

Delles Januari

Il direttore del Laboratorio Geol. Michele Caloni COMMITTENTE: F.LLI FOPPIANI TRASPORTI S.R.L. Montelupo Fiorentino, lì 12/05/2021

LOCALITA': Ponte sul fiume Orme SS 67 Tosco Romagnola V.A. n. 078/21 del 16/04/21

Tabella riassuntiva Certificati di Prova n. 765-769/2021

CAMPIONE	S1C2
Profondità metri	26.0 - 26.5
Limiti di Atterberg	
Umidità naturale (%)	14.68
Limite liquido (%)	31
Limite plastico (%)	21
Indice di plasticità (%)	10
Indice di consistenza	1.63
Indice di attività	0.35
Classificaz. Casagrande	CL
<i>G</i> ranulometria	
Ghiaia (%)	0.1
Sabbia (%)	23.8
Limo (%)	47.9
Argilla (%)	28.2
Classificazione UNI 10006	
<i>G</i> ruppo	A4
Indice di gruppo	8
Parametri fisici	
Peso volume naturale (kN/m³)	20.7
Peso volume secco (kN/m³)	17.8
Prova di Compressione E.L.L.	
Coesione non drenata, Cu (kPa)	192.5
Modulo elastico tangente iniziale, E _{ti} (kPa)	33687
Prova di taglio diretto	
Coesione, C' (kPa)	4.1
Angolo di resistenza al taglio, ¢' (°)	29.3
Prova edometrica	
Rapporto di ricompressione, Rr	0.02526
Rapporto di compressione, Rc	0.07579
Rapporto di rigonfiamento, Rs	0.02260
Pressione di preconsolidazione, σ' _{vmax} (kPa)	209
Cv (cm²/sec)	4.298E-03
K (cm/sec)	2.231E-08
Cv (cm²/sec)	2.225E-03
K (cm/sec)	8.03E-09

STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI

via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DEL NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI

ALL. N° 3 – PROVE PENETROMETRICHE DPSH _ CPTU

PROVA PENETROMETRICA DINAMICA

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

1	Caratteristiche Tecniche-Strumenta	li Sonda: DPSH I	I G 63-200 PAGANI
	Rif. Norme	DIN 4094	
	Peso Massa battente	63.5 Kg	
	Altezza di caduta libera	0.75 m	
	Peso sistema di battuta	0.63 Kg	
	Diametro punta conica	51.00 mm	
	Area di base punta	20.43 cm ²	
	Lunghezza delle aste	1 m	
	Peso aste a metro	6.31 Kg/m	
	Profondità giunzione prima a	asta 0.40 m	
	Avanzamento punta	0.20 m	
	Numero colpi per punta	N(20)	
	Coeff. Correlazione	2.12	
	Rivestimento/fanghi	No	
	Angolo di apertura punta	60 °	

GEOPROVE S.a.S.

Il Socio Accomandatario
e Diretto e ecrico
Dr. Geol Petro Barsanti
(n° 193 Alberta Geologi della Toscana)

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa M (kg)	prof. max indagine battente (m)
Leggero	DPL (Light)	M ≤ 10	8
Medio	DPM (Medium)	10 < M < 40	20-25
Pesante	DPH (Heavy)	$40 \le M < 60$	25
Super pesante (Super Heavy)	DPSH	M ≥ 60	25

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento δ = 10 cm, punta conica (α =60-90°), diametro D 35.7 mm, area base cono A=10 cm 2 rivestimento / fango bentonitico : talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica ($\alpha=60^{\circ}$ -90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico: talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

H altezza di caduta.

A area base punta conica.

δ passo di avanzamento.

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd resistenza dinamica punta (area A).

e infissione media per colpo (δ/N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N₁)60

(N₁)₆₀ è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(\text{Pa}/\sigma_{\text{vo}})} \text{ CN} < 1.7 \text{ Pa} = 101.32 \text{ kPa}$ (Liao e Whitman 1986)

 $N_{60} = N_{SPT} \cdot (ER/60) \cdot C_S \cdot C_r \cdot C_d$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

C_s parametro funzione della controcamicia (1.2 se assente).

C_d funzione del diametro del foro (1 se compreso tra 65-115mm).

C_r parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981).

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (- s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di $N_{spt,k}$ viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove σ_{Nspt} è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING* (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

 $Nspt \ corretto = 15 + 0.5 \cdot (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m;
 correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata,
 valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) $\sigma > 5$ t/mg.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito < 38°).
- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ > 15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.

- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5
 m e con (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young $(E_{\mathcal{V}})$

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

• Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

 Seed-Idriss (1978-1981). Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8, argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu (min-max).
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche
 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche" di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).

- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc = 20 e Qc/Nspt = 2.
- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher (1965), (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) da esperienze su argille glaciali .
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (Ey)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P.
 > 15
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

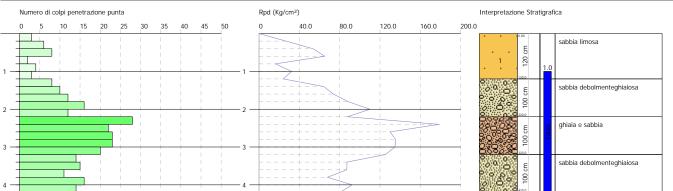
Stato di consistenza

• Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

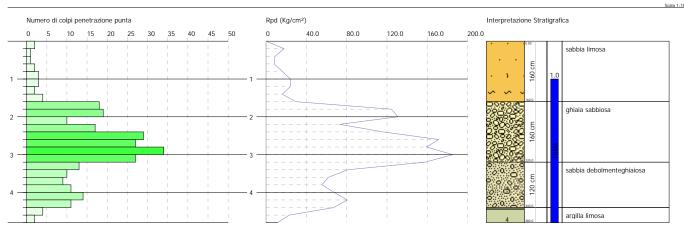
Peso di volume saturo


Meyerhof ed altri.

PROVA PENETROMETRICA DINAMICA DPSH 1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: F.Ili Foppiani Milano Descrizione: Ponte Orme Località: Empoli Data: 01/03/2021

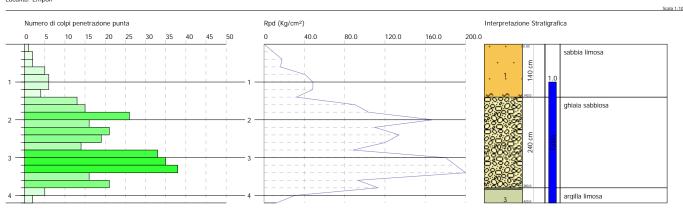
GEOPROVE S.a.S.


Il Socio Accomandatario e Diretto e Pechico Dr. Gedi Petro Barsanti (n° 193 Albo dei Geologi della Toscana)

PROVA PENETROMETRICA DINAMICA DPSH 1bis Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: F.Ili Foppiani Milano
Descrizione: Ponte Orme
Località: Empoli

Descrizione: Orme


GEOPROVE S.a.S.

Il Socio Accomandatario e Diretto e Pechico Dr. Geol Petro Barsanti (n° 193 Albe tei Geologi della Toscana)

PROVA PENETROMETRICA DINAMICA DPSH 2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: F.Ili Foppiani Milano Descrizione: Ponte Orme Località: Empoli Data: 01/03/2021

GEOPROVE S.a.S.

Il Socio Accomandatario e Diretto e Pechico Dr. Geell Petro Barsanti (n° 193 Albo dei Geologi della Toscana)

PROVA ...DPSH 1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda rilevata DPSH TG 63-200 PAGANI 01/03/2021 4.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	3	0.855	26.94	31.52	1.35	1.58
0.40	6	0.851	53.64		2.68	3.15
0.60	8	0.847	65.34	77.15	3.27	3.86
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	4	0.840	32.39	38.57	1.62	1.93
1.20	3	0.836	24.19	28.93	1.21	1.45
1.40	8	0.833	64.25	77.15	3.21	3.86
1.60	10	0.830	73.92	89.11	3.70	4.46
1.80	12	0.826	88.36	106.93	4.42	5.35
2.00	16	0.773	110.24	142.57	5.51	7.13
2.20	12	0.820	87.70	106.93	4.38	5.35
2.40	28	0.717	178.93	249.50	8.95	12.48
2.60	22	0.714	130.13	182.20	6.51	9.11
2.80	23	0.711	135.51	190.48	6.78	9.52
3.00	23	0.709	134.99	190.48	6.75	9.52
3.20	20	0.756	125.22	165.63	6.26	8.28
3.40	14	0.753	87.35	115.94	4.37	5.80
3.60	15	0.751	87.13	116.03	4.36	5.80
3.80	11	0.798	67.94	85.09	3.40	4.25
4.00	16	0.746	92.33	123.77	4.62	6.19
4.20	14	0.744	80.54	108.30	4.03	5.41

Prof. Strato (m)	NPDM	Rd (Kg/cm²	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tension e efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizi one
1.2	4.33	43.08	Incoeren te	0	1.9	2.0	0.11	2.12	9.18	sabbia limosa
2.2	11.6	104.54	Incoeren te	0	2.0	2.1	0.27	2.12	24.59	sabbia debolme nteghiai osa
3.2	23.2	195.66	Incoeren te	0	2.1	2.2	0.38	2.12	49.18	ghiaia e sabbia
4.2	14	109.83	Incoeren te	0	2.0	2.1	0.5	2.12	29.68	sabbia debolme nteghiai osa

TERRENI INCOERENTI

Densità relativa

Densita i ciativa						
	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach (1961)	
[1] - sabbia limosa	9.18	1.20	36.83	70.52	87.24	31.15
[2] - sabbia	24.59	2.20	51.08	95.11	100	50.93
debolmenteghiaiosa						
[3] - ghiaia e sabbia	49.18	3.20	60.89	100	100	65.56
[4] - sabbia	29.68	4.20	49.27	90.8	90.84	54.55
debolmenteghiaiosa						

Angolo di	i resistenz	a al taglio	0											
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmert	Mitchell	Shioi-	Japanes	De	Owasaki
		Strato	corretto	Hanson-	of	(1961)	(1964)	of	mann	& Katti	Fukuni	e	Mello	&
		(m)	per	Thornbu	(1956)			(1965)	(1977)	(1981)	1982	National		Iwasaki
			presenza	rn-					Sabbie		(ROAD	Railway		
			falda	Meyerh							BRIDG			
				of 1956							E			
											SPECIF			
											ICATIO			
											N)			
[1] -		1.20	9.18	29.62	22.62	30.57	33.31	33.36	0	<30	26.73	29.75	37.92	28.55
sabbia														
limosa			ļ										ļ	ļ
[2] -		2.20	19.795	32.66	25.66	33.54	32.72	37.01	41.32	30-32	32.23	32.94	44.06	34.9
sabbia														
debolme														
nteghiai														
osa														
[3] -		3.20	32.09	36.17	29.17	36.99	32.72	40.11	42	32-35	36.94	36.63	47.84	40.33
ghiaia e														
sabbia														
[4] -		4.20	22.34	33.38	26.38	34.26	31.56	37.75	40.71	30-32	33.31	33.7	44.24	36.14
sabbia														
debolme														
nteghiai														
osa														

Modulo di Young (Kg/cm²)

Modulo di Toui	ing (ixg/ciii)							
	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles (1982)
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	Sabbia Media
		` /	falda		(Sabbie)	(Sabbia	(Sabbia)	
					,	ghiaiosa)	,	
[1] - sabbia	9.18	1.20	9.18		73.44	109.02		
limosa								
[2] - sabbia	24.59	2.20	19.795	317.58	158.36	234.28	328.46	173.98
debolmenteghi								
aiosa								
[3] - ghiaia e	49.18	3.20	32.09	404.35	256.72	379.36	420.67	235.45
sabbia								
[4] - sabbia	29.68	4.20	22.34	337.37	178.72	264.31	347.55	186.70
debolmenteghi								
aiosa								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Buisman- Sanglerat	Begemann 1974 (Ghiaia con	Farrent 1963	Menzenbach e Malcev (Sabbia
				(sabbie)	sabbia)		media)
[1] - sabbia limosa	9.18	1.20	9.18	-	46.32	65.18	78.94
[2] - sabbia debolmenteghiai		2.20	19.795	118.77	68.12	140.54	126.29
osa	49.18	3.20	32.09	192.54	93.38	227.84	181.12
[3] - ghiaia e sabbia	49.16	3.20	32.09	192.34	93.36	227.84	181.12
[4] - sabbia	29.68	4.20	22.34	134.04	73.35	158.61	137.64
debolmenteghiai osa							
USa							

Classificazione AGI					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		

[1] - sabbia limosa	9.18	1.20	9.18	Classificazione A.G.I	POCO ADDENSATO
[2] - sabbia	24.59	2.20	19.795	Classificazione A.G.I	MODERATAMENTE
debolmenteghiaiosa					ADDENSATO
[3] - ghiaia e sabbia	49.18	3.20	32.09	Classificazione A.G.I	ADDENSATO
[4] - sabbia	29.68	4.20	22.34	Classificazione A.G.I	MODERATAMENTE
debolmenteghiaiosa					ADDENSATO

Peso unità di volume

t coo amica ar coramic					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unità di Volume
		(m)	presenza falda		(t/m^3)
[1] - sabbia limosa	9.18	1.20	9.18	Meyerhof et al.	1.70
[2] - sabbia	24.59	2.20	19.795	Meyerhof et al.	1.99
debolmenteghiaiosa					
[3] - ghiaia e sabbia	49.18	3.20	32.09	Meyerhof et al.	2.15
[4] - sabbia	29.68	4.20	22.34	Meyerhof et al.	2.04
debolmenteghiaiosa					

Peso unità di volume saturo

i cso unita ui voiunic sa	turo				
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unità Volume
		(m)	presenza falda		Saturo
					(t/m^3)
[1] - sabbia limosa	9.18	1.20	9.18	Terzaghi-Peck 1948-	1.91
				1967	
[2] - sabbia	24.59	2.20	19.795	Terzaghi-Peck 1948-	1.98
debolmenteghiaiosa				1967	
[3] - ghiaia e sabbia		3.20	32.09	Terzaghi-Peck 1948-	2.05
				1967	
[4] - sabbia	29.68	4.20	22.34	Terzaghi-Peck 1948-	1.99
debolmenteghiaiosa				1967	

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - sabbia limosa	9.18	1.20	9.18	(A.G.I.)	0.34
[2] - sabbia debolmenteghiaiosa		2.20	19.795	(A.G.I.)	0.32
[3] - ghiaia e sabbia	49.18	3.20	32.09	(A.G.I.)	0.29
[4] - sabbia debolmenteghiaiosa		4.20	22.34	(A.G.I.)	0.31

Modulo di deformazione a taglio dinamico (Kg/cm²)

Modulo di deformazion	e a tagno dinamico (Kg/	(cm ²)			
	NSPT	Prof. Strato	Nspt corretto per	Ohsaki (Sabbie pulite)	Robertson e
		(m)	presenza falda		Campanella (1983) e
					Imai & Tonouchi
					(1982)
[1] - sabbia limosa	9.18	1.20	9.18	522.38	484.40
[2] - sabbia	24.59	2.20	19.795	1075.66	774.65
debolmenteghiaiosa					
[3] - ghiaia e sabbia	49.18	3.20	32.09	1693.95	1040.64
[4] - sabbia	29.68	4.20	22.34	1205.18	834.06
debolmenteghiaiosa					

Coefficiente spinta a Riposo K0=SigmaH/P0

cocinciente spinta a Ri	therence spinta a Riposo Ro-Sigman/10							
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	K0			
		(m)	presenza falda					
[1] - sabbia limosa	9.18	1.20	9.18					
[2] - sabbia	24.59	2.20	19.795					
debolmenteghiaiosa								
[3] - ghiaia e sabbia	49.18	3.20	32.09					
[4] - sabbia	29.68	4.20	22.34					
debolmenteghiaiosa								

Strumento utilizzato... Prova eseguita in data Profondità prova Falda rilevata DPSH TG 63-200 PAGANI 01/03/2021 4.80 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	2	0.855	17.96	21.01	0.90	1.05
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80		0.843	16.27	19.29	0.81	0.96
1.00	3	0.840	24.29	28.93	1.21	1.45
1.20	3	0.836	24.19	28.93	1.21	1.45
1.40	2	0.833	16.06	19.29	0.80	0.96
1.60	4	0.830	29.57	35.64	1.48	1.78
1.80		0.776	124.52	160.40	6.23	8.02
2.00	19	0.773	130.90	169.31	6.55	8.47
2.20	10	0.820	73.08	89.11	3.65	4.46
2.40	17	0.767	116.21	151.48	5.81	7.57
2.60	29	0.714	171.54	240.17	8.58	12.01
2.80		0.711	159.08	223.61	7.95	11.18
3.00	34	0.659	185.47	281.58	9.27	14.08
3.20	27	0.706	157.87	223.61	7.89	11.18
3.40		0.753	81.11	107.66	4.06	5.38
3.60	10	0.801	61.95	77.36	3.10	3.87
3.80		0.798	55.59	69.62	2.78	3.48
4.00	11	0.796	67.73	85.09	3.39	4.25
4.20	14	0.744	80.54	108.30	4.03	5.41
4.40		0.791	67.34	85.09	3.37	4.25
4.60	4	0.789	22.91	29.03	1.15	1.45
4.80	2	0.787	11.42	14.51	0.57	0.73

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
1.6	2.25	21.66	Incoerente	0	1.8	1.9	0.14	2.12	4.77	
2.2	22.62	192.41	T	0	2.1	2.2	0.22	2.12	47.05	limosa
3.2	22.62	192.41	Incoerente	U	2.1	2.2	0.33	2.12	47.95	ghiaia sabbiosa
4.4	11.33	88.85	Incoerente	0	2.0	2.1	0.49	2.12	24.02	sabbia
										debolmente
										ghiaiosa
4.8	3	21.77	Coesivo	0	1.8	1.9	0.58	2.12	6.36	argilla
										limosa

STIMA PARAMETRI GEOTECNICI PROVA DPSH 1bis

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione	non urena	ta (Kg/CIII	,										
	NSPT	Prof.	Terzaghi	Sanglerat	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begeman	De Beer
		Strato	-Peck		-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	n	
		(m)			(1948)		1975	Benassi e	Argilla		1982		
								Vannelli	di				
									Chicago				
[4] -	6.36	4.80	0.40	0.80	0.25	0.26	0.62	0.65	0.57	0.91	0.32	0.52	0.80
argilla													
limosa													

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
[4] - argilla limosa	6.36	4.80	Robertson (1983)	12.72

Modulo Edometrico	(Kg/cm ²)					
	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-Sanglerat

		(m)	(1975)		(1974), Mitchell e Gardner			
[4] - argilla limosa	6.36	4.80	29.18		66.66	79.50		
Modulo di Young (Kg/cm²)								

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[4] - argilla limosa	6.36	4.80	52.74	63.60

C	Classificazione AGI									
		NSPT	Prof. Strato	Correlazione	Classificazione					
			(m)							
[-	4] - argilla limosa	6.36	4.80	A.G.I. (1977)	MODERAT.					
					CONSISTENTE					

Peso unità di volume										
	NSPT	Prof. Strato	Correlazione	Peso unità di volume						
		(m)		(t/m^3)						
[4] - argilla limosa	6.36	4.80	Meyerhof	1.83						

Peso unità di volume saturo				
	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m^3)
[4] - argilla limosa	6.36	4.80	Meyerhof	1.89

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - sabbia limosa [2] - ghiaia sabbiosa [3] - sabbia debolmenteghiaiosa	47.95 24.02	1.60 3.20		49.92 100 84.96	60.01 100	20.22 64.97 50.5

Angolo di	i resistenz	a al taglio	0											
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Peck- Hanson- Thornbu rn- Meyerh of 1956	Meyerh of (1956)	Sowers (1961)	Malcev (1964)	Meyerh of (1965)	Schmert mann (1977) Sabbie	Mitchell & Katti (1981)	Shioi- Fukuni 1982 (ROAD BRIDG E SPECIF ICATIO N)	Japanes e National Railway		Owasaki & Iwasaki
[1] - sabbia limosa	4.77	1.60	4.77	28.36	21.36	29.34	31.74	31.57	0	<30	23.46	28.43	32.09	24.77
[2] - ghiaia sabbiosa	47.95	3.20	31.475	35.99	28.99	36.81	32.99	39.99	42	32-35	36.73	36.44	47.86	40.09
[3] - sabbia debolme nteghiai osa	24.02	4.40	19.51	32.57	25.57	33.46	31.35	36.92	39.89	30-32	32.11	32.85	43.07	34.75

Modulo di Your	ng (Kg/cm²)							
	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles (1982)
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	Sabbia Media
			falda		(Sabbie)	(Sabbia	(Sabbia)	
						ghiaiosa)		
[1] - sabbia	4.77	1.60	4.77		38.16			
limosa								
[2] - ghiaia	47.95	3.20	31.475	400.45	251.80	372.11	416.06	232.38
sabbiosa								
[3] - sabbia	24.02	4.40	19.51	315.28	156.08	230.92	326.33	172.55
debolmenteghi								
aiosa								

Modulo Edometri	co (Kg/cm²)						
	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia
				(sabbie)	sabbia)		media)
[1] - sabbia	4.77	1.60	4.77		37.26	33.87	59.27

limosa [2] - ghiaia	47.95	3.20	31.475	188.85	92.12	223.47	178.38
sabbiosa [3] - sabbia debolmenteghiai		4.40	19.51	117.06	67.54	138.52	125.01
osa							

Classificazione AGI

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
[1] - sabbia limosa	4.77	1.60	4.77	Classificazione A.G.I	POCO ADDENSATO
[2] - ghiaia sabbiosa	47.95	3.20	31.475	Classificazione A.G.I	ADDENSATO
[3] - sabbia	24.02	4.40	19.51	Classificazione A.G.I	MODERATAMENTE
debolmenteghiaiosa					ADDENSATO

Peso unità di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità di Volume (t/m³)
[1] - sabbia limosa	4.77	1.60	4.77	Meyerhof et al.	1.53
[2] - ghiaia sabbiosa	47.95	3.20	31.475	Meyerhof et al.	2.15
[3] - sabbia	24.02	4.40	19.51	Meyerhof et al.	1.98
debolmenteghiaiosa				-	

Peso unità di volume saturo

i cso unita ui voiunic sa	tuiv				
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] - sabbia limosa	4.77	1.60	4.77	Terzaghi-Peck 1948- 1967	1.89
[2] - ghiaia sabbiosa	47.95	3.20	31.475	Terzaghi-Peck 1948- 1967	2.05
[3] - sabbia debolmenteghiaiosa		4.40	19.51	Terzaghi-Peck 1948- 1967	1.98

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - sabbia limosa	4.77	1.60	4.77	(A.G.I.)	0.34
[2] - ghiaia sabbiosa	47.95	3.20	31.475	(A.G.I.)	0.29
[3] - sabbia	24.02	4.40	19.51	(A.G.I.)	0.32
debolmenteghiaiosa					

Modulo di deformazione a taglio dinamico (Kg/cm²)

rioudio di deloi ilidzioli	e a cagno annamico (125)	ciii ,			
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Ohsaki (Sabbie pulite)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)
[1] - sabbia limosa	4.77	1.60	4.77	282.31	324.70
[2] - ghiaia sabbiosa	47.95	3.20	31.475	1663.42	1028.41
[3] - sabbia	24.02	4.40	19.51	1061.10	767.82
debolmenteghiaiosa					1

Coefficiente spinta a Riposo K0=SigmaH/P0

Cocinciente spinta a Ri	poso ixo-sigmani/i o					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	K0	
		(m)	presenza falda			
[1] - sabbia limosa	4.77	1.60	4.77			
[2] - ghiaia sabbiosa	47.95	3.20	31.475			
[3] - sabbia	24.02	4.40	19.51			
debolmenteghiaiosa						

Strumento utilizzato... Prova eseguita in data Profondità prova Falda rilevata DPSH TG 63-200 PAGANI 01/03/2021 4.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	5	0.843	40.66	48.22	2.03	2.41
1.00	6	0.840	48.59	57.86	2.43	2.89
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	4	0.833	32.13	38.57	1.61	1.93
1.60	13	0.780	90.30	115.84	4.52	5.79
1.80	15	0.776	103.77	133.66	5.19	6.68
2.00	26	0.723	167.55	231.68	8.38	11.58
2.20	16	0.770	109.80	142.57	5.49	7.13
2.40	21	0.717	134.20	187.13	6.71	9.36
2.60	19	0.764	120.26	157.35	6.01	7.87
2.80	14	0.761	88.28	115.94	4.41	5.80
3.00	33	0.659	180.01	273.30	9.00	13.66
3.20	35	0.656	190.15	289.86	9.51	14.49
3.40	38	0.653	205.63	314.70	10.28	15.74
3.60	16	0.751	92.93	123.77	4.65	6.19
3.80	21	0.698	113.45	162.45	5.67	8.12
4.00	5	0.796	30.79	38.68	1.54	1.93
4.20	2	0.794	12.28	15.47	0.61	0.77

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
1.4	3.71	36.19	Incoerente	0	1.9	2.0	0.13	2.12	7.87	sabbia limosa
3.8	22.25	187.35	Incoerente	0	2.1	2.2	0.37	2.12	47.17	ghiaia sabbiosa
4.2	3.5	27.07	Coesivo	0	1.8	1.9	0.54	2.12	7.42	argilla limosa

STIMA PARAMETRI GEOTECNICI PROVA DPSH 2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione	non arena	ta (Kg/cm²	')										
	NSPT	Prof.	Terzaghi	Sanglerat	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begeman	De Beer
		Strato	-Peck		-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	n	
		(m)			(1948)		1975	Benassi e	Argilla		1982		
								Vannelli	di				
									Chicago				
[3] -	7.42	4.20	0.46	0.93	0.25	0.30	0.73	0.81	0.66	0.99	0.37	0.79	0.93
argilla													
limosa													

Qc (Resistenza punta Penetrometro Statico)

ì	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
[3] - argilla limosa	7.42	4.20	Robertson (1983)	14.84

Modulo Edometrico (Kg/cm²)

Modulo Edollich ico	(ixg/ciii)					
	NSPT	Prof. Strato	Stroud e Butler			Buisman-Sanglerat
		(m)	(1975)		(1974), Mitchell e	
					Gardner	
[3] - argilla limosa	7.42	4.20	34.04	-	77.47	92.75

Modulo di Young (Kg/cm²)				
	NSPT	Prof. Strato	Schultze	Apollonia

		(m)		
[3] - argilla limosa	7.42	4.20	64.93	74.20

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[3] - argilla limosa	7.42	4.20	A.G.I. (1977)	MODERAT.
				CONSISTENTE

Peso unità di volume

	NSPT	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
[3] - argilla limosa	7.42	4.20	Meyerhof	1.88

Peso unità di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m^3)
[3] - argilla limosa	7.42	4.20	Meyerhof	1.90

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - sabbia limosa	7.87	1.40	33.16	64.55	77.84	28.09
[2] - ghiaia sabbiosa	47.17	3.80	60.18	100	100	64.59

Angolo di resistenza al taglio

Angoio ai	resistenz	a ai tagii)											
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Peck- Hanson- Thornbu rn- Meyerh of 1956	Meyerh of (1956)	Sowers (1961)	Malcev (1964)	Meyerh of (1965)	Schmert mann (1977) Sabbie	Mitchell & Katti (1981)	Fukuni 1982	National	Mello	Owasaki & Iwasaki
[1] - sabbia limosa	7.87	1.40	7.87	29.25	22.25	30.2	32.72	32.84	0	<30	N) 25.87	29.36	36.51	27.55
[2] - ghiaia sabbiosa	47.17	3.80	31.085	35.88	28.88	36.7	32.7	39.9	42	32-35	36.59	36.33	47.58	39.93

Modulo di Young (Kg/cm²)

Miduald al Toul	ig (ixg/ciii)								
	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles (1982)	ı
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	Sabbia Media	ı
			falda		(Sabbie)	(Sabbia	(Sabbia)		i
						ghiaiosa)			1
[1] - sabbia	7.87	1.40	7.87		62.96				1
limosa									ı
[2] - ghiaia	47.17	3.80	31.085	397.97	248.68	367.50	413.14	230.42	ì
sabbiosa									i

Modulo Edometrico (Kσ/cm²)

Modulo Edometri	co (Kg/cm ²)						
	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia
				(sabbie)	sabbia)		media)
[1] - sabbia	7.87	1.40	7.87		43.63	55.88	73.10
limosa							
[2] - ghiaia	47.17	3.80	31.085	186.51	91.31	220.70	176.64
sabbiosa							

Classificazione AGI

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
[1] - sabbia limosa	7.87	1.40	7.87	Classificazione A.G.I	POCO ADDENSATO
[2] - ghiaia sabbiosa	47.17	3.80	31.085	Classificazione A.G.I	ADDENSATO

Peso unità di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità di Volume (t/m³)
[1] - sabbia limosa	7.87	1.40	7.87	Meyerhof et al.	1.65

[2] - ghiaia sabbiosa	47.17	3.80	31.085	Me	yerhof et al.	2.15
-----------------------	-------	------	--------	----	---------------	------

Peso unità di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] - sabbia limosa	7.87	1.40	7.87	Terzaghi-Peck 1948-	1.90
				1967	
[2] - ghiaia sabbiosa	47.17	3.80	31.085	Terzaghi-Peck 1948-	2.05
				1967	

Modulo di Poisson

		NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
j	[1] - sabbia limosa	7.87	1.40	7.87	(A.G.I.)	0.34
ĺ	[2] - ghiaia sabbiosa	47.17	3.80	31.085	(A.G.I.)	0.29

Modulo di deformazione a taglio dinamico (Kg/cm²)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Ohsaki (Sabbie pulite)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)
[1] - sabbia limosa	7.87	1.40	7.87	451.99	440.91
[2] - ghiaia sabbiosa	47.17	3.80	31.085	1644.04	1020.61

Coefficiente spinta a Riposo K0=SigmaH/P0

Cocincicine spinion in re-	P000 110 D1G11111111					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	K0	
		(m)	presenza falda			
[1] - sabbia limosa	7.87	1.40	7.87			
[2] - ghiaia sabbiosa	47.17	3.80	31.085			

GEOPROVE S.a.S.

Il Socio Accomandatario
e Diretto e fechico
Dr. Geol Protto Barsanti
(n° 193 Albo dei Geologi della Toscana)

PROVA PENETROMETRICA STATICA

|--|

Caratteristiche Strumentali PAGANI 200 kN (CPTU)

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35.7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	1
Costante di trasformazione Ct	10

Il responsabile del sito

Il direttore

PROVE PENETROMETRICHE STATICHE (CONE PENETRATION TEST)

CPT

PROVE CPT: METODOLOGIA DELL' INDAGINE

La prova penetrometrica statica CPT (di tipo meccanico) consiste essenzialmente nella misura della resistenza alla penetrazione di una punta meccanica di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante ($v = 2 \text{ cm} / \text{s} \pm 0.5 \text{ cm} / \text{s}$).

La penetrazione viene effettuata tramite un dispositivo di spinta (martinetto idraulico), opportunamente ancorato al suolo con coppie di coclee ad infissione, che agisce su una batteria doppia di aste (aste coassiali esterne cave e interne piene), alla cui estremità è collegata la punta.

Lo sforzo necessario per l'infissione è misurato per mezzo di manometri, collegati al martinetto mediante una testa di misura idraulica.

La punta conica (del tipo telescopico) è dotata di un manicotto sovrastante, per la misura dell'attrito laterale: punta / manicotto tipo "Begemann".

Le dimensioni della punta / manicotto sono standardizzate, e precisamente :

- diametro Punta Conica meccanica $= 35.7 \, \text{mm}$ $= 10 \text{ cm}^2$ - area di punta Αp = 60° - angolo di apertura del cono - superficie laterale del manicotto $= 150 \text{ cm}^2$ Am

Sulla batteria di aste esterne può essere installato un anello allargatore per diminuire l'attrito sulle aste, facilitandone l'infissione.

REGISTRAZIONE DATI.

Una cella di carico, che rileva gli sforzi di infissione, è montata all'interno di un'unità rimovibile, chiamata "selettore", che preme alternativamente sull'asta interna e su quella esterna.

Durante la fase di spinta le aste sono azionate automaticamente da un comando idraulico. L'operatore deve solamente controllare i movimenti di spinta per l'infissione delle aste.

I valori acquisiti dalla cella di carico sono visualizzati sul display di una Sistema Acquisizione Automatico (qualora presente) o sui manometri.

Per mezzo di un software (in alcuni strumenti) è possibile sia durante l'acquisizione, che in un secondo momento a prove ultimate trasferire i dati ad un PC.

Le letture di campagna (che possono essere rilevate dal sistema di acquisizione sia in Kg che in Kg/cm²) durante l'infissione sono le seguenti:

- Lettura alla punta LP = prima lettura di campagna durante l'infissione relativa all'infissione della sola punta
- Lettura laterale LT = seconda lettura di campagna relativa all'infissione della punta+manicotto

Lettura totale LLTT = terza lettura di campagna relativa all'infissione delle aste esterne (tale lettura non sempre viene rilevata in quanto non è influente metodologicamente ai fini interpretativi).

METODOLOGIA DI ELABORAZIONE

I dati rilevati della prova sono quindi una coppia di valori per ogni intervallo di lettura costituiti da LP (Lettura alla punta) e LT (Lettura della punta + manicotto), le relative resistenze vengono quindi desunte per differenza, inoltre la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta).

Trasferiti i dati ad un PC vengono elaborati da un programma di calcolo "STATIC PROBING" della GeoStru

La resistenze specifiche Qc (Resistenza alla punta RP) e Ql Resistenza Laterale RL o fs attrito laterale specifico che considera la superficie del manicotto di frizione) vengono desunte tramite opportune costanti e sulla base dei valori specifici dell'area di base della punta e dell'area del manicotto di frizione laterale tenendo in debito conto che:

= 1'area punta (base del cono punta tipo "Begemann") = 10 cm^2

Am = area del manicotto di frizione = 150 cm^2

= costante di trasformazione =10 Ct

Il programma Static Probing permette inoltre l'archiviazione, la gestione e l'elaborazione delle Prove Penetrometriche Statiche.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno. L'utilizzo dei dati dovrà comunque essere trattato con spirito critico e possibilmente, dopo esperienze geologiche acquisite in zona.

I dati di uscita principali sono RP (Resistenza alla punta) e RL (Resistenza laterale o fs, attrito laterale specifico che considera la superficie del manicotto di frizione) che il programma calcola automaticamente; inoltre viene calcolato il Rapporto RP/RL (Rapporto Begemann 1965) e il Rapporto RL/RP (Rapporto Schmertmann 1978 – FR %).

I valori sono calcolati con queste formule:

Qc (RP) =
$$(LP \times Ct) / 10 \text{ cm}^2$$
. Resistenza alla punta

Ql (RL) (fs) =
$$[(LT - LP) \times Ct] / 150 \text{ cm}^2$$
. Resistenza laterale

Qc (RP) = Lettura alla punta LP x Costante di Trasformazione Ct / Superficie Punta Ap

Ql (RL) (fs) = Lettura laterale LT- Lettura alla punta LP x Costante di Trasformazione Ct / Am area del manicotto di frizione

N.B.

- $Ap = 10 cm^2 e Am = 150 cm^2$
- la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta)

VALUTAZIONI STATISTICHE

Permette l'elaborazione statistica dei dati numerici di Static Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Medio

Media aritmetica dei valori della resistenza alla punta sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori della resistenza alla punta sullo strato considerato.

Massimo

Valore massimo dei valori del numero della resistenza alla punta sullo strato considerato.

Minimo

Valore minimo dei valori del numero della resistenza alla punta sullo strato considerato.

Media (+) s

Media (+) scarto (valore statistico) dei valori della resistenza alla punta sullo strato considerato.

Media (-) s

Media (-) scarto (valore statistico) dei valori della resistenza alla punta sullo strato considerato.

CORRELAZIONI

Scegliendo il tipo di interpretazione litologica (consigliata o meno a seconda del tipo di penetrometro utilizzato) si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati. Il programma esegue inoltre il grafico (per i vari autori) Profondità/Valutazioni litologiche, per visualizzare in maniera diretta l'andamento delle litologie presenti lungo la verticale indagata.

INTERPRETAZIONI LITOLOGICHE (Autori di riferimento)

- Searle 1979
- Douglas Olsen 1981 (consigliato per CPTE)
- A.G.I. 1977 (consigliato per CPT)
- Schmertmann 1978 (consigliato per CPT)
- Robertson 1983-1986 (consigliato per CPTE)
- Begemann 1965 (consigliato per CPT)

Suddivisione delle metodologia di indagine con i Penetrometri statici

CPT (Cone Penetration Test – punta Meccanica tipo Begemann)

CPTE (Cone Penetration Test Electric – punta elettrica)

CPTU (Piezocono)

Per quanto riguarda la PUNTA ELETTRICA generalmente tale strumento permette di ottenere dati in continuo con un passo molto ravvicinato (anche 2 cm.) rispetto al PUNTA MECCANICA (20 cm.).

Per il PIEZOCONO i dati di inserimento oltre a quelli di LP e LT sono invece la pressione neutrale misurata ed il tempo di dissipazione (tempo intercorrente misurato tra la misura della sovrappressione neutrale e la pressione neutrale o pressione della colonna d'acqua). Tale misurazione si effettua generalmente misurando la sovrappressione ottenuta in fase di spinta e la pressione neutrale (dissipazione nel tempo) misurata in fase di alleggerimento di spinta (arresto penetrazione). Il programma usato per le elaborazioni permette di immettere U1 - U2 - U3 cioè la sovrappressione neutrale misurata rispettivamente con filtro poroso posizionato nel cono, attorno al cono, o attorno al manicotto a seconda del tipo di piezocono utilizzato. Tale sovrappressione (che è data dalla somma della pressione idrostatica preesistente la penetrazione e dalle pressioni dei pori prodotte dalla compressione) può essere positiva o negativa e generalmente varia da (-1 a max. + 10-20 kg/cmq) ed è prodotta dalla compressione o dilatazione del terreno a seguito della penetrazione. Per il calcolo oltre ai dati strumentali generali si deve immettere per una correzione dei valori immessi:

Area punta del cono (area esterna punta)

Area interna punta del cono (area del restringimento in prossimità del setto poroso – interna conomanicotto). Generalmente il rapporto tra le aree varia da (0.70 - 1.00).

Il Passo del penetrometro (l'intervallo entro cui effettua la lettura, generalmente per penetrometri normali è 20 cm., per le punte elettriche-piezoconi può essere di 2 cm).

Il programma elabora quindi i dati di resistenza alla punta e laterale fs con le opportune correzioni dovute alla normalizzazione (con la tensione litostatica e con la pressione dei pori). Robertson definisce infine il valore caratteristico del Ic (Indice di tipo dello strato) e Contenuto in materiale fine FC % (cioè la percentuale di contenuto argilloso < 2 micron).

CORRELAZIONI GEOTECNICHE

Scegliendo il tipo di interpretazione litologica si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati.

Ad ogni strato mediato il programma calcola la Qc media, la fs media, il peso di volume naturale medio, il comportamento geotecnico (coesivo, incoerente o coesivo-incoerente), ed applica una texture.

L'utilizzo dei dati dovrà comunque essere trattato con spirito critico e possibilmente, dopo esperienze geologiche acquisite in zona.

TERRENI INCOERENTI

Angolo di Attrito

Angolo di Attrito (Durgunouglu-Mitchell 1973-1975) – per sabbie N.C. e S.C. non cementate

Angolo di Attrito (Meyerhof 1951) – per sabbie N.C. e S.C.

Angolo di Attrito Herminier

Angolo di Attrito (Caquot) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (Koppejan) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (De Beer 1965-1967) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (Robertson & Campanella 1983) - per sabbie non cementare quarzose

Angolo di Attrito (Schmertmann 1977-1982) – per varie litologie (correlazione che generalmente sovrastima il valore)

Densità relativa (%)

Densità Relativa (Baldi ed altri 1978-1983 - Schmertmann 1976) - per sabbie NC non cementate

Densità Relativa (Schmertmann)

Densità Relativa (Harman 1976)

Densità Relativa (Lancellotta 1983)

Densità Relativa (Jamiolkowski 1985)

Densità Relativa (Larsson 1995) - per sabbie omogenee non gradate

Modulo di Young

Modulo di Young (Schmertmann 1970-1978) Ey (25) – Ey(50) - modulo secante riferito rispettivamente al 25 % e 50 % del valore di rottura – prima fase della curva carico/deformazione

Modulo di Young secante drenato (Robertson & Campanella 1983) Ev (25) – Ev(50)- per sabbie NC Ouarzose.

Modulo di Young (ISOPT-1 1988) Ey (50) - per sabbie OC sovraconsolidate e SC

Modulo Edometrico

Modulo Edometrico (Robertson & Campanella) da Schmertmann

Modulo Edometrico (Lunne-Christoffersen 1983 - Robertson and Powell 1997) - valido per sabbie NC

Modulo Edometrico (Kulhawy-Mayne 1990)

Modulo Edometrico (Mitchell & Gardner 1975) – valido per sabbie

Modulo Edometrico (Buisman - Sanglerat) – valido per sabbie argillose

Peso di Volume

Peso di Volume (Meyerhof) -

Peso di Volume saturo (Meyerhof) -

Modulo di deformazione di taglio

Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra

0.5 - 4.0 kg/cmq.

Potenziale di Liquefazione

Verifica alla liquefazione dei suoli incoerenti (Metodo di Robertson e Wride 1997 - C.N.R. - GNDT) coefficiente di sicurezza relativo alle varie zone sismiche I-I-III-IV cat. – N.B. la liquefazione è assente per Fs \geq = 1,25, possibile per Fs=1,0-1,25 e molto probabile per Fs \leq 1

Fattori di compressibilità

Ramo di carico C (autori vari)

Ramo di carico medio Crm (autori vari)

OCR - Grado di Sovraconsolidazione

Grado di Sovraconsolidazione OCR - (metodo Stress-History)

Grado di Sovraconsolidazione OCR (Larsson 1991 S.G.I.)

Grado di Sovraconsolidazione OCR (Piacentini-Righi Inacos 1978)

Grado di Sovraconsolidazione OCR - (Ladd e Foot - Ladd ed altri 1977)

Modulo Di Reazione Ko

(Kulhawy Maine, 1990).

Correlazione NSPT

Meardi – Meigh 1972

Meyerhof

TERRENI COESIVI

Coesione Non Drenata

Coesione non drenata (Lunne & Eide)

Coesione non drenata (Rolf Larsson SGI 1995) - suoli fini granulari

Coesione non drenata (Baligh ed altri 1976-1980) in tale elaborazione occorre inserire il valore di Nk (generalmente variabile da 11 a 25)

Coesione non drenata (Marsland 1974-Marsland e Powell 1979)

Coesione non drenata Sunda (relazione sperimentale)

Coesione non drenata (Lunne T.-Kleven A. 1981)

Coesione non drenata (Kjekstad. 1978)

Coesione non drenata (Lunne, Robertson and Powell 1977)

Coesione non drenata (Terzaghi - valore minimo)

Coesione non drenata (Begemann)

Coesione non drenata (De Beer) - valida per debole coesione.

Indice Di Compressione C

Indice di Compressione Vergine Cc (Schmertmann)

Indice di Compressione Vergine Cc (Schmertmann 1978)

Fattore di compressibilità ramo di carico C (Piacentini-Righi Inacos 1978)

Fattore di compressibilità medio ramo di carico Crm (Piacentini-Righi Inacos 1978).

Modulo Edometrico-Confinato

Mitchell - Gardnerr (1975) Mo (Eed) (Kg/cmq) per limi e argille.

Metodo generale del modulo edometrico.

Buisman correlazione valida per limi e argille di media plasticità – Alluvioni attuali argille plastiche – suoli organici (W 90-130)

Buisman e Sanglerat valida per litotipi argille copatte

Valore medio degli autori su suoli coesivi

Modulo di deformazione non drenato

Modulo di deformazione non drenato Eu (Cancelli ed altri 1980)

Modulo di deformazione non drenato Eu (Ladd ed altri 1977) – (Inserire valore **n** 30 < n < 1500 sulla base di esperienze acquisite e del tipo

litologico)

Peso di Volume

Peso di Volume terreni coesivi (t/mg) (Meyerhof)

Peso di Volume saturo terreni coesivi (t/mg) (Meyerhof)

Modulo di deformazione di taglio)

Imai & Tonouchi (1982)

OCR

Grado di Sovraconsolidazione OCR - (metodo Stress-History)

Grado di Sovraconsolidazione OCR (P.W. Mayne 1991) - per argille ed argille sovraconsolidate

Grado di Sovraconsolidazione OCR (Larsson 1991 S.G.I.)

Grado di Sovraconsolidazione OCR (Piacentini-Righi Inacos 1978)

Grado di Sovraconsolidazione Jamiolkowski et altri 1979 – valida per argilla di Taranto

Grado di Sovraconsolidazione Schmertmannn 1978

Coefficiente Di Consolidazione Verticale

Coefficiente di Consolidazione Cv (Piacentini-Righi, 1988)

Permeabilità

Coefficiente di Permeabilità K (Piacentini-Righi, 1988)

UBICAZIONE PROVE

CPTU 1

CPTU 1 BIS

CPTU 2

Cone Penetration Test (CPTU) - Date: 01/03/2021

Site: Empoli Pontorme - Test: P1

Company information

Name: Geoprove S.a.S.

Address: via Buiamonti 29

Zip code: 55100

City: Lucca

P.IVA: 01066010461

E-Mail: info@geoprove.com

Phone number: 0583 467427

Fax number: 0583 91090

Site information

Name: Empoli Pontorme

Date: 01/03/2021

Commissioner:

Locality:

Test information

Name: P1

Location: P1

Date: 01/03/2021

Prehole mode:

Prehole depth [cm]: 0

Hydrostatic line [cm]: 100

Ground level [cm]: 0

Latitude: 43.721175

Longitude: 10.960296

Operator: Dott. Alessandro Petroni

Comments: F.Ili Foppiani

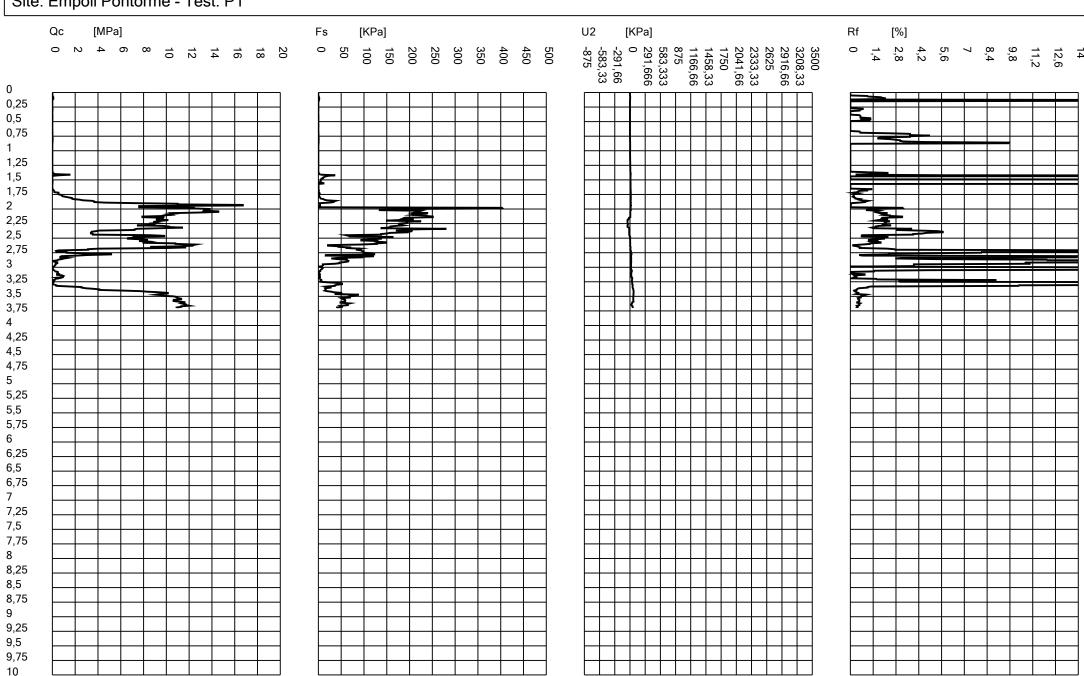
Probe code: MKJ544

Cone Penetration Test (CPTU) - Date: 01/03/2021

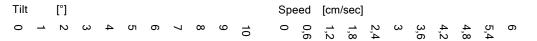
Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
F	0,005227	0			1 000010	1.7
5			0	0	1,899012	1,7
10	0,078411	1,530222	3,033088	1,951543	1,875755	1,8
15	0,005227	1,115787	1,102941	21,345001	2,015307	1,7
20	0	0	0,275735	0	1,915306	1,8
25	0	0	0,091912	0	1,975144	1,8
30	0,015682	0,095639	1,102941	0,609857	1,838166	1,7
35	0	0	0,551471	0	1,802662	1,8
40	0,005227	0,03188	0,367647	0,609857	1,76937	1,8
45	0,005227	0,063759	0,367647	1,219714	1,738416	1,8
50	0	0	0,183824	0	1,776716	1,8
55	0	0	0,091912	0	1,776716	1,8
60	0	0.03188	0	0	1,819906	1,8
65	0	0	0	0	1,819906	1,8
70	0.005227	0,03188	0	0.609857	1,798476	1,8
75	0,005227	0,255037	0,091912	4,878857	1,779694	1,9
80	0,003227	0,446315	0,551471	1,7076	1,892479	1,7
85	0,026137	0,440313	2,113971	3,252572	1,963614	
90	'	0,510074	2,113971			1,7
	0	·	I *	0	2,034806	1,7
95	0	0	2,757353	0	2,097445	1,7
100	0	0	2,849265	0	2,163055	1,8
105	0	0	1,654412	0	2,234843	1,8
110	0	0	2,113971	0	2,15947	1,8
115	0	0	2,389706	0	2,230216	1,9
120	0	0	3,676471	0	2,230216	1,8
125	0	0	4,503676	0	2,230216	1,8
130	0	0	5,330882	0	2,302158	1,9
135	0	0	6,066176	0	2,302158	1,9
140	0,125457	1,530222	13,235294	1,219714	2,097445	1,9
145	0	15,716654	9,650735	0	1,930185	2,1
150	0	6,280286	9,558824	0	1,899136	2
155	0,010455	2,422851	9,742647	23,174573	1,930185	1,9
160	0	0,255037	9,834559	0	1,866127	1,9
165	0	0,255037	10,753676	0	1,838166	2
170	0,151594	0,796991	13,235294	0,525739	1,900441	2
175	0,543649	1,849018	14,797794	0,340113	1,656039	2
180	1,134344	1,68962	15,165441	0,148951	1,64033	1,9
185	2,394145	12,65621	15,073529	0,528632	1,630831	2
190	4,605332	24,611069	17,555147	0,534404	1,079078	1,9
195	16,711971	3,570518	19,025735	0,021365	1,984225	1,7
200	12,415055	404,488651	10,202206	3,25805	1,838166	8,6
205		219,363683	5,330882			
	14,563513			1,506255	1,975144	1,8
210	10,21955	214,836776	6,25	2,102214	2,09099	2

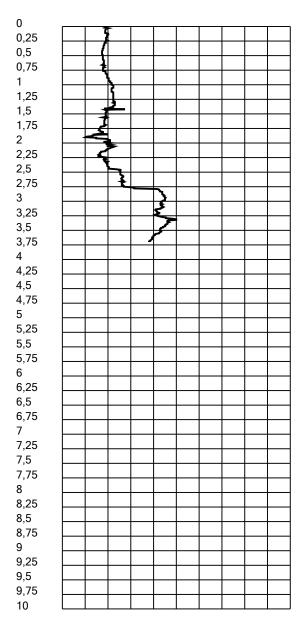
Cone Penetration Test (CPTU) - Date: 01/03/2021

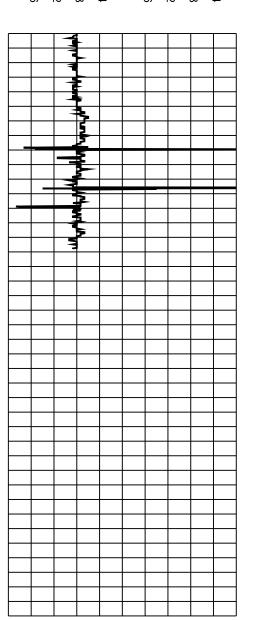
GEOPROVE #
DI PIETRO BARSANTI, ALESSANDRO PETRONI & C

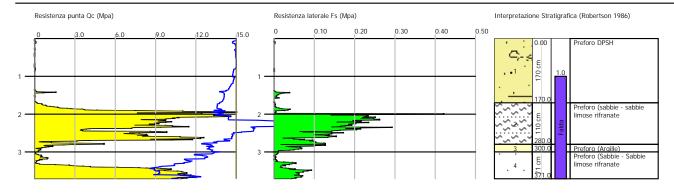

DI PIETRO BARSANTI, ALESSANDRO PETRONI & C

DI PIETRO BARSANTI, ALESSANDRO PETRONI & C


GEOGNOSTICA - GEOFISICA
PROVE PENETROMETRICHE
Has ballayaria, CPI MICA - Ila (1853-1861/197) fran 1883/1970
Has industryonican's red in Proposecular Circle 18.10/1980/1971


215 7,898589 250,924509 5,974265 3,176827 1,888071 220 10,167277 175,943637 -46,139706 1,730489 1,656039 225 9,226346 193,987503 -44,209559 2,102539 1,776716 230 9,717721 169,631472 -46,231618 1,745589 1,819906 235 7,417669 280,891354 -13,051471 3,786788 1,915306 240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877	1,3 2 1,9 1,8 2 1,8 1,9 1,9 1,7 1,7
220 10,167277 175,943637 -46,139706 1,730489 1,656039 225 9,226346 193,987503 -44,209559 2,102539 1,776716 230 9,717721 169,631472 -46,231618 1,745589 1,819906 235 7,417669 280,891354 -13,051471 3,786788 1,915306 240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118	2 1,9 1,8 2 1,8 1,9 1,9 1,7 1,7
225 9,226346 193,987503 -44,209559 2,102539 1,776716 230 9,717721 169,631472 -46,231618 1,745589 1,819906 235 7,417669 280,891354 -13,051471 3,786788 1,915306 240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588	1,9 1,8 2 1,8 1,9 1,7 1,7
230 9,717721 169,631472 -46,231618 1,745589 1,819906 235 7,417669 280,891354 -13,051471 3,786788 1,915306 240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,8 2 1,8 1,9 1,9 1,7 1,7
235 7,417669 280,891354 -13,051471 3,786788 1,915306 240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	2 1,8 1,9 1,9 1,7 1,7
240 3,450078 195,836521 -14,0625 5,676292 1,975144 245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,8 1,9 1,9 1,7 1,7
245 3,559854 137,146136 -13,694853 3,852578 2,015307 250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,9 1,9 1,7 1,7
250 7,370622 134,978322 2,205882 1,831302 2,542956 255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,9 1,7 1,7 1,7
255 8,311553 94,140525 3,033088 1,132647 2,542039 260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,7 1,7 1,7
260 10,799791 128,187962 3,676471 1,186949 2,618339 265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,7 1,7
265 11,071615 45,715379 3,492647 0,412906 2,669423 270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,7
270 3,120753 84,194083 5,055147 2,697877 2,607341 275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	
275 1,233664 98,922469 15,349265 8,018588 2,702757 280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	
280 3,016205 16,162969 22,794118 0,535871 4,180201 285 1,332985 42,017343 23,345588 3,152125 4,380943	1,8
285 1,332985 42,017343 23,345588 3,152125 4,380943	
	1,9
	2
290 0,078411 65,8633 21,231618 83,997662 4,447113	2
295 0,324098 35,864575 18,566176 11,065957 4,528072	1,9
300 0 0,255037 11,856618 0 4,409603	1,9
305 0,026137 5,515175 19,025735 21,101058 4,314956	1,9
310 0,475693 0,223157 26,5625 0,046912 4,380943	1,8
315 0,852065 2,008416 24,908088 0,235712 4,093784	1,7
320 0,538421 0,446315 41,084559 0,082893 4,162071	1,9
325 0,130685 3,921194 36,397059 3,000497 4,166644	1,8
330 0,036592 51,676868 41,176471 141,225498 4,541269	1,8
335 2,561422 27,00204 48,805147 1,054182 4,601328	1,8
340 4,124412 15,907932 61,213235 0,385702 4,610549	1,8
345 10,130685 50,082887 64,522059 0,494368 4,413973	1,9
350 9,63931 80,27289 63,878676 0,832766 4,280565	1,8
355 11,30162 54,131599 60,569853 0,478972 4,246162	1,6
360 11,113434 58,562867 65,441176 0,526956 3,995373	1,8
365 11,730267 64,524356 28,125 0,550067 3,933461	1,8
370 10,893884 40,837796 51,102941 0,374869 3,799351	1,7





Probe CPTU - Piezocone CPTU 1 Strumento utilizzato PAGANI 200 kN (CPTU)

Data: 01/03/2021

IL RESPONSABILE DEL SITO Pag. 1 Scala 1:100 IL DIRETTORE

Cone Penetration Test (CPTU) - Date: 01/03/2021

Site: Empoli Pontorme - Test: P1bis

Company information

Name: Geoprove S.a.S.

Address: via Buiamonti 29

Zip code: 55100

City: Lucca

P.IVA: 01066010461

E-Mail: info@geoprove.com

Phone number: 0583 467427

Fax number: 0583 91090

Site information

Name: Empoli Pontorme

Date: 01/03/2021

Commissioner:

Locality:

Test information

Name: P1bis

Location: P1bis

Date: 01/03/2021

Prehole mode:

Prehole depth [cm]: 0

Hydrostatic line [cm]: 100

Ground level [cm]: 0

Latitude: 43.721213

Longitude: 10.9602740

Operator: Dott. Lessandro Petroni

Comments: F.Ili Foppiani

Probe code: MKJ544

Cone Penetration Test (CPTU) - Date: 01/03/2021

OF REPORT BASSANT, ALESSANDRA PETRONI & C.

OF PENETRO METRICHE
OUT Bild veget, 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

The Industry 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

THE INDUSTRY 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

THE INDUSTRY 27 BLOCA TA, GASSAGO 272 Fe, BLOSADO 270

THE INDUSTRY 27 BLOCA TA, GASSAGO 272 FE, BLOSADO 270

THE INDUSTRY 27 BLOCA TA, GASSAGO 272 FE, BLOSADO 270

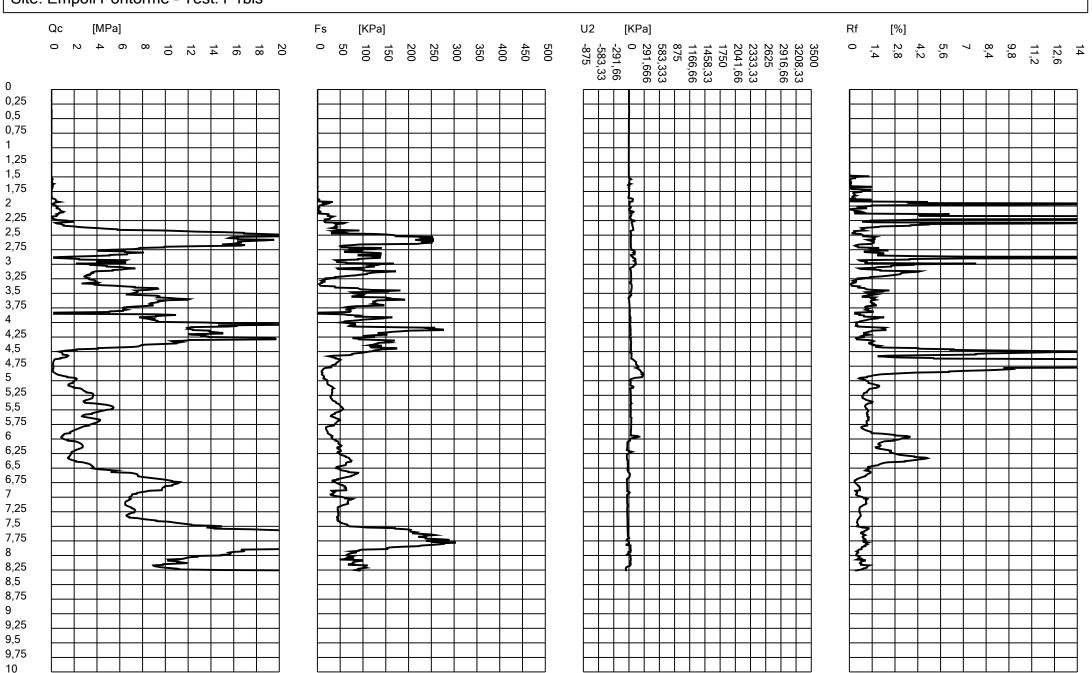
THE INDUSTRY 27 BLOCA TA, GASSAGO 272 FE, BLOSADO 270

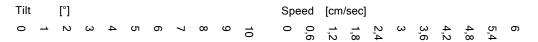
THE INDUSTRY 27 BLOCA TA, GASSAGO 272 FE, BLO

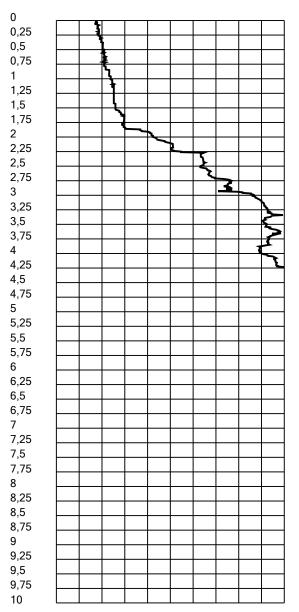
Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
[e]	[5]	[]	[2]	[,*]	r 1	
5	0	0	0,183824	0	1,819906	1,8
10	0	0	0,275735	0	1,819906	1,8
15	0	0	0,275735	0	1,798476	1,8
20	0	0	0,183824	0	1,798476	1,8
25	0	0	0,275735	0	1,798476	1,7
30	0	0	0	0	1,919595	1,9
35	0,010455	0	1,930147	0	1,975422	1,8
40	0,015682	0	3,584559	0	2,046202	1,8
45	0,015682	0	0,919118	0	2,034806	1,8
50	0,010455	0	-0,551471	0	2,025899	2
55	0,005227	0	-0,919118	0	2,025899	1,9
60	0,005227	0	-1,746324	0	2,097445	1,9
65	0,010455	0	-1,470588	0	2,163055	1,9
70	0,005227	0	-1,470588	0	2,091278	2
75	0,005227	0	-1,838235	0	2,097445	1,9
80	0	0	-2,389706	0	2,163055	1,9
85	0	0	-4,227941	0	2,163055	1,8
90	0	0,095639	-3,584559	0	2,320036	1,9
95	0	0,063759	-3,492647	0	2,312231	1,9
100	0	0,063759	-3,492647	0	2,383869	2,1
105	0	0,095639	-3,676471	0	2,450261	1,9
110	0	0,095639	-3,584559	0	2,522083	1,9
115	0	0,095639	-3,492647	0	2,450261	2
120	0	0,095639	-3,308824	0	2,519011	1,7
125	0	0,063759	-3,033088	0	2,517986	1,8
130	0	0,063759	-2,941176	0	2,517986	2,1
135	0	0,063759	-2,941176	0	2,517986	1,9
140	0	0,063759	-2,849265	0	2,517986	1,9
145	0	0,063759	-2,849265	0	2,589928	1,9
150	0,005227	0,063759	1,654412	1,219714	2,590924	2
155	0,115003	0,063759	37,775735	0,055442	2,677336	1,9
160	0,057501	0,063759	4,136029	0,110883	2,828647	1,9
165	0,073183	0,063759	-16,544118	0,087122	2,909784	1,9
170	0,104548	0,063759	-4,411765	0,060986	2,971416	2
175	0,026137	0,223157	1,378676	0,8538	2,963595	1,9
180	0,02091	0,063759	2,022059	0,304929	2,881281	1,9
185	0,036592	0,063759	-8,547794	0,174245	3,022436	1,9
190	0,3816	5,164499	71,599265	1,353382	3,741007	1,9
195	0,324098	11,540423	5,974265	3,560779	4,172662	1,8
200	0,376372	5,132619	10,477941	1,363708	4,244604	1,9
205	0,454783	4,718184	36,029412	1,037458	4,390829	1,9
210	0,904339	5,738332	59,191176	0,634533	4,822271	1,8

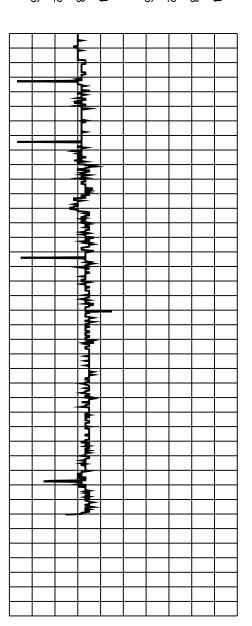
Cone Penetration Test (CPTU) - Date: 01/03/2021

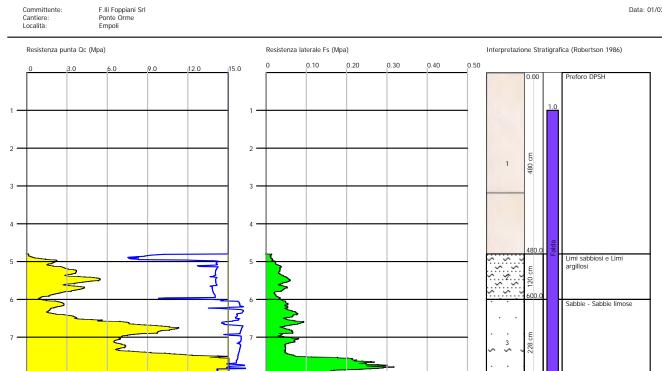
Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
215	0.428646	26.364448	47.610294	6.150633	5.109918	1,8
220	0.057501	31,656465	20,404412	55.053471	5,04867	1,9
225	0.507057	17.980107	40.533088	3,545974	5,187757	1,8
230	0.36069	60,603162	47.610294	16,802007	6,334554	2,1
235	1.10298	41,252232	60.386029	3.740072	6,337366	1,8
240	4.824882	40,423361	79,136029	0.83781	6,442503	1,9
245	12.686879	39,530732	29.6875	0.311588	6.531155	2
250	19.90068	151.268809	42.830882	0.760119	6,388582	1,8
255	15.729221	224.846978	33.455882	1.429486	6.587395	2
260	18,787245	226,34532	34,742647	1,204782	6,766813	2
265	16,204914	228,162459	34,558824	1,407983	6,662279	2
270	12,739153	50,592961	33.088235	0,397145	6,824072	2,1
275	7,260847	114,511604	40,992647	1,577111	7,613492	2
280	6,455829	60,380005	107,8125	0,935279	7,661269	_ 1,9
285	5,138526	90,155573	35,386029	1,754503	7,378004	1,7
290	0,230005	137,114257	77.022059	59,613539	7,485014	1,8
295	6,419237	42,336139	89.613971	0,65952	7,940757	1,8
300	2,153685	167.654935	128,125	7,78456	8,63369	1,6
305	4.871929	124,458046	82,077206	2,554595	8.732326	1,8
310	6,246733	88,210916	28,952206	1,412113	8,994282	2
315	3,575536	128,283601	37.316176	3.587815	9,084935	2
320	3,277574	84,736037	39,430147	2,585328	9,181583	2
325	3,298484	21,901301	40.257353	0.663981	9,273776	2
330	3.857815	15.907932	41,176471	0.412356	9.273776	2
335	4,197595	3,34736	43,106618	0.079745	9,944122	2,1
340	7.313121	39.116297	49.908088	0,534878	9,153517	2
345	8.504966	117.540168	41,452206	1,382018	9.051966	2
350	7.365395	78.58327	26.011029	1.066925	9.204749	2
355	9.304757	92,578424	29,6875	0,994958	9,173092	2
360	11,08207	154,58429	-4,227941	1,394904	9,619927	2,1
365	9.367486	122,385871	4,871324	1,306496	9,815974	2,1
370	8,734971	134,213211	8,823529	1,536504	9,461246	1,9
375	6,419237	61,559551	13,511029	0,958986	9,324169	2,2
380	6,293779	72,685539	17,279412	1,154879	9,248055	2
385	0,235233	0,82887	12,224265	0,352362	9,285918	2
390	9,184527	83,492731	17,1875	0.909059	8,952958	2
395	9.13748	122.194593	25,551471	1,33729	8,889279	2,1
400	9.226346	60,029329	28,125	0,65063	8,921073	2
405	20,177731	82.887019	19,577206	0,410785	9,270381	2,1
410	11,975954	258,41622	27,389706	2,157792	9,553989	2
415	13,873497	202,881918	25,551471	1,46237	9,622047	2
420	15.002614	133.862535	30.422794	0.892261	9.644602	2
	1 -,	1,- >=====	L /	-,	- · · ·	


Cone Penetration Test (CPTU) - Date: 01/03/2021


Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
· ·						
425	13,763722	124,298648	8,272059	0,903089	10,307921	1,9
430	19,665447	90,984443	31,158088	0,462661	11,608296	2
435	11,280711	159,111196	40,441176	1,410471	11,962869	2
440	7,861997	114,734762	36,121324	1,459359	11,828359	2
445	4,098275	173,042591	37,5	4,222328	11,971844	2,1
450	1,029796	122,417751	32,8125	11,887571	12,120367	2
455	0,98275	76,256057	47,242647	7,759459	12,197478	2
460	1,369577	31,943382	45,404412	2,332355	12,192085	2
465	0,26137	51,103035	80,055147	19,552021	12,269162	2
470	0,156822	42,654935	131,066176	27,19963	12,274914	2,1
475	0,151594	30,986993	148,345588	20,44073	12,35267	2
480	0,146367	14,568988	170,588235	9,95374	12,246308	2,1
485	0,151594	9,27697	220,404412	6,119601	12,317673	2
490	0,50183	9,691405	237,132353	1,931214	12,317673	2,1
495	1,385259	14,919663	236,580882	1,077031	12,380992	2
500	2,122321	21,168069	28,492647	0,997402	12,460422	2
505	1,855724	21,773782	31,709559	1,173331	12,317673	2,1
510	1,578672	28,978577	45,772059	1,83563	12,23815	2
515	2.639833	32,867891	27,481618	1,245075	12,373328	2
520	3,058024	32,708493	30,882353	1,069596	12,373328	2,1
525	3,690538	31,783984	33,272059	0,861229	12,444807	2
530	3,596445	29,393012	33,639706	0,81728	12,587781	2,2
535	2,937794	33,856159	32,996324	1,152435	12,603196	2,1
540	3,836905	43,93012	48.069853	1.144936	12,682817	2
545	5,352849	51,48559	32,261029	0,961835	12,754166	2,1
550	5,326712	56.58633	33,272059	1.062313	12,825522	2,1
555	3,936226	43,611324	32,536765	1,107948	12,817401	2
560	2,817564	31.465187	31,25	1.116751	12,888814	2,1
565	3,481443	39,977047	47,977941	1,14829	13,111005	2,1
570	4,22896	45,014027	42,279412	1,064423	13,111005	2,1
575	3,601673	39,020658	41,452206	1,083404	13,182391	2,1
580	2,760063	21,263708	39,797794	0,770407	13,17452	2,1
585	2,127548	19,765366	37,5	0,929021	13,24596	2,1
590	1,657083	22,570773	34,466912	1,362078	13,24596	2,1
595	1,040251	28,978577	34,466912	2,78573	13,24596	2
600	0.987977	31.815863	47.150735	3.220304	13,317405	2 2
605	2,106639	44,982147	-24,356618	2,135257	13,381483	2,1
610	2,100039	44,982147	-24,336618	1.783952	13,309988	2,1
615	2,00010	44,376435	-28,952206	1,616993	13,302929	2 2
620	2,744381	50,624841	1 1 1 1 1 1	_ ·	· ·	2,1
	I '	I '	-39,246324 7,169118	2,350615	13,374467	
625	1,740721	46,129814	i i	2,65004	13,374467	2,1
630	1,610037	58,913542	-40,165441	3,659143	13,367808	2,1


Depth [cm]	Qc [MPa]	Fs [KPa]	U2 [KPa]	Rf [%]	Tilt [°]	Speed [cm/sec]
635	1,526398	70,709003	-37,132353	4,632408	13,439391	2,1
640	2,158913	70,709003	-37,132353	3,402206	13,439391	
645	3,439624	62,611579	-23,161765	1,820303	13,439391	2 2,1
650	3,695766	42,017343	-23,161765	1,136905	13,439391	
	I '				·	2,1
655 660	5,593309	54,418516	-27,757353	0,972922	13,934568	2
	7,2138	88,848508	13,694853	1,231646	13,934568	2,1
665	7,605855	74,534558	10,753676	0,979963	13,934568	2
670	9,649765	43,834481	-38,143382	0,454254	14,006215	2
675	11,280711	39,371334	-36,305147	0,349015	14,006215	2
680	10,606377	54,992349	-34,558824	0,518484	14,006215	2,1
685	9,754313	60,061209	-32,628676	0,61574	13,934568	2,1
690	8,520648	30,986993	-29,503676	0,363669	14,006215	2
695	7,485625	34,908187	0,367647	0,466336	14,012183	2,1
700	6,926294	49,381535	-34,283088	0,712958	14,149516	2
705	6,894929	74,470798	-34,558824	1,080081	14,22117	2,1
710	6,487193	66,054578	-33,363971	1,018231	14,21564	2
715	6,560376	54,354756	-30,147059	0,828531	14,287329	2
720	7,051751	44,344555	-31,801471	0,628845	14,359021	2
725	7,302666	45,045907	-32,169118	0,616842	14,359021	2
730	6,779927	46,161693	-30,974265	0,680858	14,21564	2,1
735	6,842656	42,973731	-29,871324	0,628027	14,21564	2
740	8,750653	43,89824	-28,308824	0,501657	14,287329	2
745	10,993204	52,34634	-26,746324	0,47617	14,430716	2
750	14,202823	68,062994	-25,643382	0,479222	14,42083	2
755	14,312598	169,854629	-25,827206	1,186749	14,559941	1,9
760	22,101411	204,157103	-23,805147	0,923729	14,502413	1,9
765	27.647674	249,585565	-22,150735	0,902736	14,072267	1,9
770	27,762676	237,821984	0,459559	0,856625	14,000585	0,9
775	28,651333	288,478704	-43,382353	1,00686	14.083797	1,8
780	27,391532	277,86279	3,768382	1,014411	14,155414	2
785	23.110298	222.551645	26.930147	0,962998	14,168213	2
790	20.412964	153,532262	27,481618	0,752131	14,025135	2
795	15,938317	85,246111	-5.055147	0,53485	14,253809	2
800	14,913748	63,950523	20,036765	0,428802	14,389639	2
805	11,876634	65,89518	30,974265	0,55483	14,23323	2,1
810	10.24046	98,093599	32,628676	0,957902	14.090067	2,1
815	10.935703	79.157103	30.698529	0,937902	14,090007	2
820	9,231573	102,811783	-19,209559	1,113697	14,118499	2
825	11,170936	89,677378	-57,352941	0,802774	14,118499	1,9
020	11,170936	09,07/3/0	-57,352941	0,002/74	14,118499	1,9
I						





Probe CPTU - Piezocone CPTU 1 bis Strumento utilizzato PAGANI 200 kN (CPTU)

Committente: Cantiere: Località: Data: 01/03/2021

IL RESPONSABILE DEL SITO Pag. 1 Scala 1:100 IL DIRETTORE

Cone Penetration Test (CPTU) - Date: 01/03/2021

Site: Empoli Pontorme - Test: P2

Company information

Name: Geoprove S.a.S.

Address: via Buiamonti 29

Zip code: 55100

City: Lucca

P.IVA: 01066010461

E-Mail: info@geoprove.com

Phone number: 0583 467427

Fax number: 0583 91090

Site information

Name: Empoli Pontorme

Date: 01/03/2021

Commissioner:

Locality:

Test information

Name: P2

Location: P2

Date: 01/03/2021

Prehole mode:

Prehole depth [cm]: 0

Hydrostatic line [cm]: 100

Ground level [cm]: 0

Latitude: 43.720919

Longitude: 10.960165

Operator: Dott. Lessandro Petroni

Comments: F.Ili Foppiani

Probe code: MKJ544

Cone Penetration Test (CPTU) - Date: 01/03/2021

CI PIETRO BARSANTI, ALESAMORO PETRONI 8 C

CONTROL SENSOR SENSOR

Depth	Qc	Fs	U2	Rf	Tilt	Speed		
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]		
5	0	0,063759	2,665441	0	2,125384	1.0		
10	0		0,919118			1,9		
	·	0	1 *	0	2,125384	1,8		
15	0	0	3,492647	0	2,059861	1,8		
20	0,005227	0	8,455882	0	1,963377	1,8		
25	0,005227	0,063759	11,488971	1,219714	1,838166	1,9		
30	0	0,063759	9,742647	0	1,838166	1,8		
35	0,010455	0	10,202206	0	1,838166	1,9		
40	0	0,159398	8,547794	0	1,776619	1,9		
45	0	0	5,698529	0	1,776619	1,8		
50	0	0	5,055147	0	1,776619	1,8		
55	0	0	5,147059	0	1,739857	1,9		
60	0	0	5,147059	0	1,677785	1,8		
65	0	0	4,595588	0	1,677785	1,9		
70	0,005227	0,255037	-0,919118	4,878857	1,544543	1,9		
75	0,010455	0,796991	0,735294	7,623215	1,512398	1,8		
80	0,015682	1,338944	4,227941	8,538001	1,389377	2		
85	0	1,275185	3,400735	0	1,389377	1,9		
90	0,031364	1,083907	5,238971	3,455857	1,59244	1,9		
95	0,250915	1,211426	11,397059	0,482804	2,322122	1,9		
100	0,627287	0,605713	21,139706	0,096561	3,262499	1,9		
105	0,527967	46,990564	-7,720588	8,900292	3,15475	1,9		
110	0,878202	34,429992	36,305147	3,92051	3,089311	1,9		
115	0,324098	34,429992	31.617647	10,623319	3,15475	1,9		
120	0.067956	8,575618	12,224265	12,619352	3,192316	1,9		
125	0,005227	17,629431	-7,444853	337,25102	2,845537	1,9		
130	0,297961	3,698036	24,724265	1,241113	2,845537	1,9		
135	1,68322	2.390972	40,992647	0.142047	2,059861	1,9		
140	3,899634	39,084417	31,525735	1,002259	2,312231	1,9		
145	8,431783	10,201479	23,713235	0,120988	2,378447	1,8		
150	11,840042	24,100995	24,816176	0,120368	2,450261	1,8		
155	13.340303	89.231064	15.716912	0,668883	2,158273	1,8		
160	15,818087	75,490946	16,911765	0,477244	1,956926	1,8		
165	18,562467	75,490946	16,911765	0,477244	1,915306	1,9		
170	17,250392	156,369549	1 *	,	2,085871	1,9		
	l '		16,544118	0,90647				
175	22,179822	130,196378	17,830882	0,587004	2,234377	1,6		
180	21,641401	150,408059	19,393382	0,695001	2,863466	1,6		
185	24,803973	200,459067	17,279412	0,808173	3,638938	1,6		
190	24,364872	261,253507	12,959559	1,072255	4,217947	1,7		
195	11,829587	249,107371	7,444853	2,105799	4,694296	1,8		
200	10,052274	312,229023	8,088235	3,106054	4,854784	1,7		
205	7,652901	255,06886	9,742647	3,332969	4,982898	1,8		
210	11,348667	138,931395	13,878676	1,224209	4,985881	1,6		

Cone Penetration Test (CPTU) - Date: 01/03/2021

Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
215	16,361735	48,361387	16,452206	0,295576	5,348774	1,6
220	25,509671	225,803366	17,1875	0,885168	5,318439	1,6
225	26,654469	291,124713	16,268382	1,092217	5,230747	1,5
230	30,72138	198,992604	17,647059	0,647733	5,632441	1,6
235	30,156822	116,488141	14,246324	0,386275	5,588975	1,7
240	16,194459	197,462382	3,860294	1,219321	5,588975	1,8
245	1,939362	218,821729	-19,852941	11,28318	5,661951	1,8
250	0,078411	143,011987	-5,882353	182,387954	5,761901	1,8
255	0,005227	58,594746	-7,169118	1120,917496	5,820172	1,7
260	0	2,199694	-0,551471	0	5,920024	1,7
265	0,005227	1,753379	1,102941	33,542145	5,861879	1,7
270	0,235233	1,562102	8,180147	0,664067	5,933843	1,6
275	l oʻ	3,37924	6,709559	0	5,711049	1,8
280	0	1,944657	14,613971	0	5,711049	1,8
285	0,047047	2,901046	27,757353	6,166334	5,811889	1,7
290	1,453215	4,463147	47,242647	0,307122	5,689114	1,6
295	4,082593	4,048712	50,827206	0,09917	5,790331	1,6
300	7,391532	12,337414	52,389706	0,166913	5,842049	1,6
305	7,281756	52,728896	54,6875	0,724123	6,096444	1,6
310	6.335599	84,385361	64.889706	1.331924	5.991844	1,5
315	7.020387	75,969141	100,827206	1,082122	5,739044	1,9
320	12,195504	29,58429	107,720588	0,242584	5,333988	1,8
325	16,37219	78,997705	13,235294	0,482512	5,890647	1,8
330	19,163617	142,310635	-16,084559	0,742608	5,702833	1,7
335	26,3931	158,346085	-27.665441	0,599953	5,494215	1,6
340	16,136958	252,167814	-29,227941	1,562673	5,399841	1,7
345	23.758495	277,129559	-24.080882	1,166444	5,538431	1,6
350	22.901202	403,213466	42.279412	1,760665	5,393088	1,5
355	19,613173	394,032135	-2,205882	2,009018	5,217799	1,7
360	20,067956	332,281306	-19,761029	1,655781	4,960225	1,7
365	14,009409	294,567712	9,650735	2,102642	4,747867	1,7
370	16,51333	171,44861	9.191176	1,038244	3,638449	1,4
375	4,145321	23,304004	17,922794	0,562176	3,361745	1,7
380	9,607946	92,89722	-6.893382	0,302170	3,158984	1,7
385	7.302666	69.019383	0.827206	0.945126	2,652181	1,7
390	1,552535	232,211171	47,426471	14,956901	2,403754	1,7
395	0,878202	181,012497	115,716912	20,611721	2,302692	1,8
400	0,878202	141,736802	412,132353	32,278869	2,302692	1,7
405	0,439101	21,837541	412,132353	,		
	1.003659	21,837541 21,040551	,	2,881049	2,201678	1,8
410	,	i i	333,547794	2,096384	2,157803	1,8
415	0,946158	22,730171	299,540441	2,402366	2,157803	1,8
420	0,951385	28,564142	234,283088	3,002374	2,115463	1,8

Cone Penetration Test (CPTU) - Date: 01/03/2021

Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
425	0,914794	35,258863	191,911765	3,854297	2,0572	1,7
430	0,930476	53,047692	178,308824	5,701137	1,956702	1,7
435	0,852065	51,166794	185,386029	6,005035	1,915306	1,9
440	0,8207	55,948738	203,584559	6,817193	1,815486	1,8
445	0,883429	55,311145	217,1875	6,26096	1,656039	1,9
450	0,94093	60,411885	215,992647	6,420441	1,756096	1,8
455	0,967067	52,697016	224,448529	5,449156	1,815486	2
460	1,066388	64,141801	236,580882	6,014866	1,815486	2
465	1,029796	51,676868	214,705882	5,018165	1,915306	1,9
470	0,993204	58,594746	137,040441	5,899566	1,856326	1,9
475	1,019341	63,854884	185,110294	6,264328	1,815486	0,5
480	1,035024	61,145116	188,051471	5,907606	1,715881	1,9
485	1,029796	61,081357	198,253676	5,931403	1,715881	2
490	1,019341	62,324662	204,6875	6,114209	1,715881	2,1
495	1,071615	60,79444	229,871324	5,673159	1,715881	2,1
500	1,118662	61,272635	231,341912	5,477315	1,616531	1,9
505	1,165708	61,910227	172,058824	5,310954	1,616531	2
510	1,123889	73,833206	194,301471	6.569438	1,57931	1,9
515	1,155254	74,725835	206,985294	6,468349	1,57931	2
520	1,2023	71,537873	226,286765	5,950085	1,517487	2
525	1,22321	69,465698	204,871324	5,678969	1,481267	2
530	1.092525	71,378475	142,738971	6,53335	1,418816	2
535	1,150026	70,900281	170,3125	6,165102	1,418816	2
540	1,113434	67.839837	168,014706	6,092845	1,320602	2
545	1,055933	70,13517	183,272059	6,642009	1,320602	2
550	1.10298	70.995919	193,75	6,436739	1,2584	1,9
555	1,050706	69,433818	191,452206	6,608303	1,222958	1,9
560	1,092525	68,891864	201,194853	6,305748	1,222958	2,1
565	1,165708	69,178781	213,051471	5.934485	1,222958	2
570	1,186618	70,422086	220,128676	5,934689	1,126031	1,9
575	1,108207	73,705687	228,125	6,650895	1,126031	2
580	1,280711	66,437133	247,426471	5,18752	1,126031	2
585	1,249347	73.004336	250,643382	5.843401	1,09576	2,1
590	1,160481	75,363428	260,845588	6,494155	1,030027	2
595	1,144799	78,647029	293,474265	6,869944	1,09576	2
600	1,165708	74,693956	307,169118	6,407603	1,030027	2
605	1.150026	68.891864	319,485294	5.990461	1,002019	2,1
610	1,186618	67.807957	325,919118	5,714389	1,002019	2,1
615	1,254574	67,807957	362,316176	5,404859	1,002019	2
620	1,254574	66,373374	352,665441	5,290511	1,002019	2,1
625	1,2023	69,370059	328,768382	5,769779	0,978508	2,1
630	1,2023	72,175465	330,882353	6,247587	0,978508	2 2
030	1,100204	72,170400	330,002333	0,247507	0,876506	

Cone Penetration Test (CPTU) - Date: 01/03/2021

Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
635	1,097752	74,502678	345,955882	6,786839	0,959823	2
640	1,035024	67,871716	341,819853	6,557505	0,959823	1,9
645	0,967067	61,62331	350,735294	6,372183	0,889871	2
650	0,96184	59,774292	389,522059	6,214577	0,875214	1,9
655	1,160481	49,987248	464,338235	4,30746	0,875214	2
660	1,338212	49,668452	475	3,711553	0,875214	2
665	1,129117	51,644989	306,525735	4,573929	0,804338	2
670	1,035024	68,541188	382,444853	6,622187	0,723012	1,9
675	1,468897	73,769447	455,882353	5,022098	0,794629	2
680	1,657083	62,260903	218,841912	3,757259	0,723012	1,8
685	1,369577	84,034685	126,102941	6,135815	0,723012	2,1
690	1,291166	114,639123	254,779412	8,87873	0,719424	2
695	1,495034	104,086968	415,441176	6,962181	0,719424	1,9
700	1,406168	94,236164	325,183824	6,701628	0,719424	2
705	1,270256	101,058403	397,518382	7,95575	0,647482	2
710	1,170936	91,653915	388,419118	7,827408	0,647482	1,9
715	1,076843	77,180566	356,985294	7,167302	0,647482	2
720	0,98275	69.656975	360,9375	7.087968	0.647482	1,9
725	1.160481	58,562867	405.606618	5,046431	0,57554	2
730	1,369577	54,290997	426,102941	3,964072	0,57554	2
735	1,249347	60,348125	292,371324	4,830375	0,57554	2
740	1,275484	78,105075	203,216912	6,123566	0,57554	2
745	1,129117	86,553175	327,389706	7,665566	0,57554	2
750	1,217982	80,432288	446,966912	6,603732	0,57554	1,9
755	1,08207	78,870186	279,044118	7,288824	0,647482	2
760	0.909566	66.532772	416.636029	7,314781	0.647482	2
765	0,956613	58,594746	398,253676	6,125232	0,719424	2
770	0,867747	41,539148	437,408088	4,787011	0.719424	2
775	0.946158	40,008926	439,522059	4,228568	0.647482	2
780	1,144799	31,879623	461,488971	2,784736	0,647482	1,8
785	1,207527	41,698546	409,099265	3,453217	0.647482	2,1
790	1,275484	43,89824	440,992647	3,441694	0,647482	1,9
795	1,270256	52.601377	575,551471	4.141006	0.647482	1,9
800	1,040251	57,032645	546,507353	5,482585	0.647482	2
805	1,108207	49,540933	595,220588	4,470368	0.580018	1,9
810	1,254574	46,671767	269,944853	3,720129	0,580018	2
815	1,259801	57,829635	344,485294	4.590377	0,59325	2
820	1,714584	68,349911	655,882353	3,986384	0.59325	1,9
825	2,373236	73,068095	539,613971	3,078838	0,614671	2
830	3,14689	84,991074	596,507353	2,700796	0,643464	1,9
835	3,491898	104,501403	391,727941	2,992682	0,618862	1,9
840	3,465761	146,518745	710,477941	4,227607	0,663262	1,9
040	3,405/01	140,518/45	/10,4//941	4,22/60/	0,003262	1,9

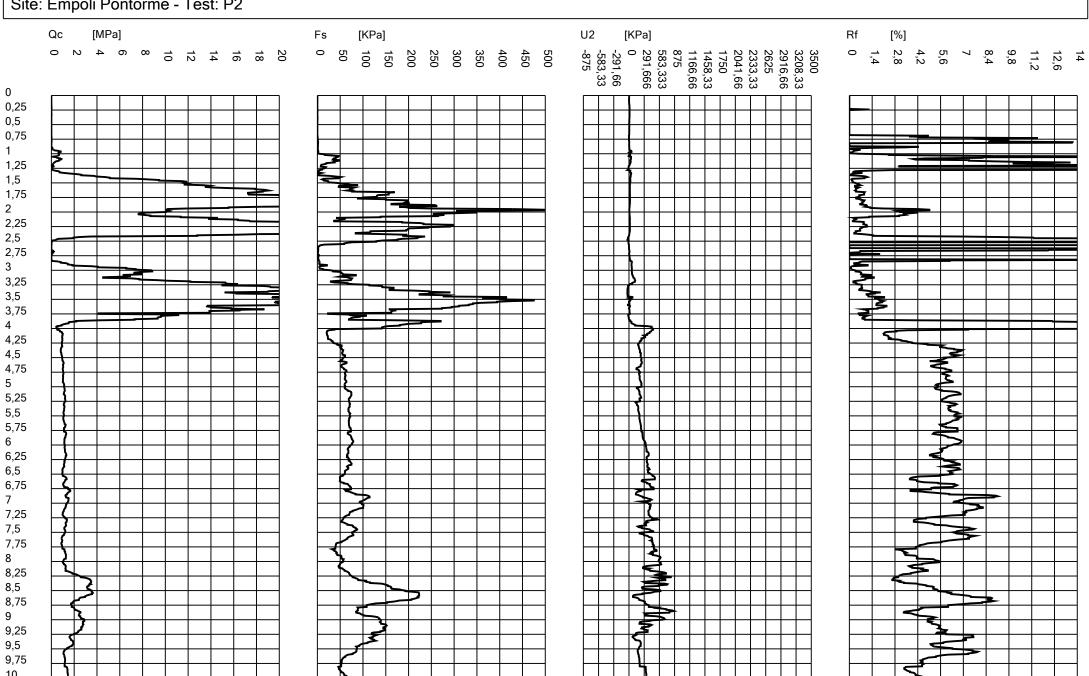
Cone Penetration Test (CPTU) - Date: 01/03/2021

Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
845	3,120753	161,661566	242,738971	5,180211	0,712176	1,8
850	3.413487	185.061209	570.863971	5.421472	0,663262	1,9
855	3.643492	222,264728	384,650735	6,100322	0,663262	2
860	3,042342	223,189237	75,643382	7,3361	0,663262	1,9
865	2,430737	212,318286	179,871324	8,734729	0,663262	1,9
870	1,92368	166,666667	293,198529	8,663949	0,663262	1,9
875	1,740721	113,682734	331,341912	6.530783	0,678691	1,9
880	1,986409	88,338434	532,352941	4,447143	0,618862	1,8
885	2,247778	88.848508	791,636029	3,952725	0,618862	2
890	2,456874	93,056618	303,492647	3,787602	0,618862	1,9
895	1 -	l '	l '	·	· ·	
900	2,530058 2,843701	119,293548 137.018618	499,540441 658,272059	4,715053 4,81832	0,618862 0,618862	1,9 1,8
905	2,801882	136,986738	209,283088	1 5	II	
	1 -	1	· ·	4,889098	0,618862	1,9
910	2,770518	150,758735	419,485294	5,441537	0,618862	2
915	2,603241	144,669727	239,522059	5,557293	0,663262	1,8
920	2,420282	144,064014	341,360294	5,952364	0,663262	1,8
925	2,002091	119,134149	125,735294	5,950486	0,663262	1,9
930	1,594354	121,429482	66,544118	7,616216	0,663262	1,8
935	1,725039	123,629176	118,933824	7,166746	0,663262	1,9
940	1,907998	109,920939	218,841912	5,761062	0,712176	1,9
945	1,798223	92,004591	216,360294	5,116418	0,712176	1,9
950	1,369577	86,648814	181,25	6,326686	0,764736	1,9
955	1,129117	85,564907	160,477941	7,57804	0,764736	1,8
960	1,06116	77,403724	169,852941	7,294252	0,813908	1,9
965	1,144799	60,79444	180,882353	5,310492	0,813908	1,9
970	1,2023	54,227238	190,992647	4,510292	0,813908	1,9
975	1,18139	52,155062	192,830882	4,414718	0,813908	1,9
980	1,165708	52,059424	198,253676	4,465905	0,813908	1,9
985	1,400941	47,27748	308,272059	3,374695	0,813908	1,9
990	1,411396	52,505738	311,305147	3,720129	0,813908	1,9
995	1,447987	58,977302	320,588235	4,073053	0,813908	2
1000	1,427078	66,660291	320,772059	4,671104	0,866269	1,8
1005	1,34344	67,489161	307,352941	5,02361	0,866269	1,9
1010	1,228437	67,489161	301,194853	5,493905	0,866269	1,9
1015	1,233664	57,638358	322,610294	4,672126	0,866269	1,9
1020	1,306848	47,054323	329,503676	3,600597	0,866269	1,9
1025	1,233664	44,599592	310,477941	3,615213	0,866269	1,9
1030	1,139571	51,007396	298,161765	4,476016	0,866269	1,9
1035	1,092525	56,331293	298,161765	5,156065	0,866269	1,9
1040	1,087297	51,676868	301,470588	4,752781	0,866269	1,8
1045	1,118662	48,265749	304,044118	4,314597	0,866269	1,9
1050	1,244119	47,181841	331,158088	3,792389	0,866269	1,9

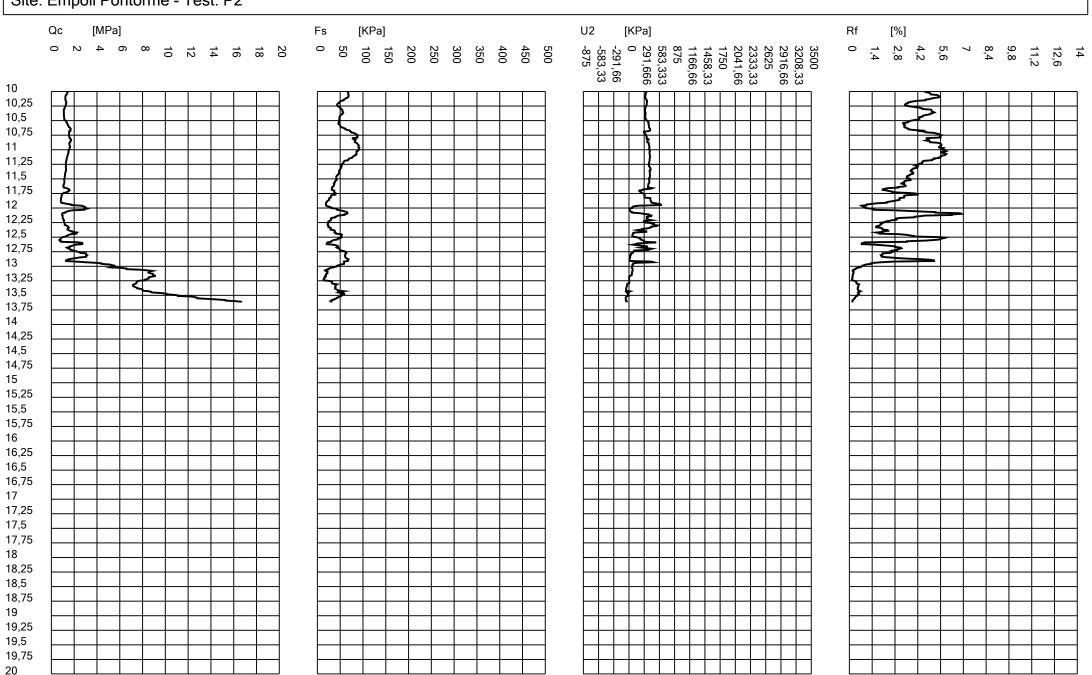
Cone Penetration Test (CPTU) - Date: 01/03/2021

Depth	Qc	Fs	U2	Rf	Tilt	Speed
[cm]	[MPa]	[KPa]	[KPa]	[%]	[°]	[cm/sec]
1055	1,406168	46,608008	358,272059	3,31454	0,866269	1,8
1060	1,521171	51,230553	369,669118	3,367837	0,866269	1,9
1065	1,693675	61,336394	388,511029	3,621498	0,820244	1,8
1070	1,573445	73,610048	274,632353	4,678273	0,820244	1,9
1075	1,568217	88,72099	314,430147	5,657442	0,878139	1,9
1080	1,630946	77,531242	324,172794	4,753759	0,878139	1,8
1085	1,68322	82,153787	334,283088	4,880751	0,878139	1,9
1090	1,568217	88,147156	363,602941	5,62085	0,878139	1,9
1095	1,636174	90,155573	375,827206	5,510147	0,878139	1,9
1100	1,547308	90,37873	379,044118	5,841031	0,878139	1,8
1105	1,505489	85,564907	377,573529	5,68353	0,93798	1,9
1110	1,42185	80,814843	382,996324	5,683779	0,93798	1,9
1115	1,34344	69,784494	379,779412	5,194464	0,93798	1,8
1120	1,296393	58,27595	376,470588	4,495238	0,93798	1,9
1125	1,270256	53,749044	371,691176	4,231355	0,97848	1,8
1130	1,265029	52,314461	384,742647	4,135436	1,03752	1,8
1135	1,285938	49,126498	396,966912	3,820284	1,03752	1,8
1140	1,207527	47,404999	384,834559	3,925791	1,03752	1,8
1145	1,18139	42,049222	387,040441	3,559299	1,03752	1,8
1150	1,134344	42,368018	369,485294	3,735024	1,03752	1,9
1155	1,144799	38,542464	375,551471	3,366746	1,03752	1,9
1160	1,092525	36,916603	357,261029	3,379017	1,0981	1,9
1165	1,092525	32,580974	347,518382	2,982172	1,0981	1,8
1170	1,589127	36,916603	190,165441	2,323074	1,0981	1,8
1175	1,003659	40,678398	256,617647	4,053009	1,0981	1,9
1180	0,878202	29,55241	284,375	3,365105	1,0981	1,9
1185	0,836383	25,822494	392,922794	3,087402	1,137444	1,8
1190	0,86252	19,765366	418,014706	2,291585	1,137444	1,8
1195	1,751176	18,58582	589,705882	1,061334	1,137444	1,9
1200	3,010978	30,317521	57,352941	1,0069	1,137444	1,8
1205	1,536853	55,534302	19,852941	3,613508	1,197289	1,9
1210	0,930476	64,078041	271,507353	6,886589	1,197289	1,9
1215	0,987977	39,530732	325,551471	4,001179	1,197289	1,8
1220	1,040251	30,253762	324,172794	2,908314	1,159978	1,8
1225	1,129117	22,092578	299,540441	1,956625	1,159978	1,8
1230	1,30162	24,132874	527,481618	1,854064	1,159978	1,8
1235	1,46367	29,55241	335,386029	2,019063	1,159978	1,9
1240	1,840042	38,128029	318,658088	2,072128	1,159978	1,8
1245	1,698902	52,34634	67,279412	3,081186	1,159978	1,8
1250	0,956613	53,557766	134,283088	5,598689	1,159978	1,9
1255	0,690016	35,577659	240,165441	5,156065	1,159978	1,9
1260	2,713016	21,805662	319,209559	0,803742	1,0981	1,8

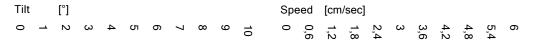
Cone Penetration Test (CPTU) - Date: 01/03/2021

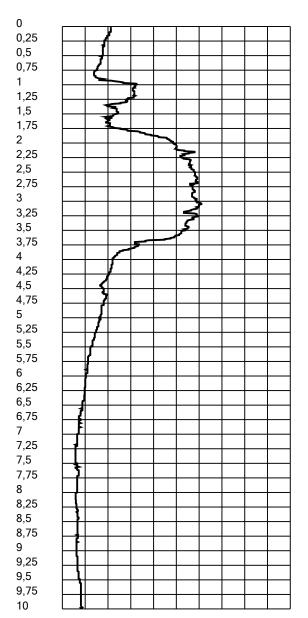

CI PIERO BASSATI, ALESSATION PERFORM & C.

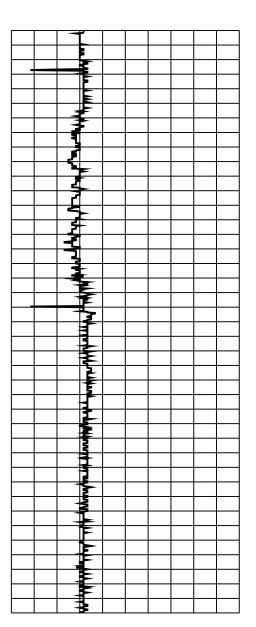
GEOGNOSTICA - GEOFISICA
PROVE PENETROMETRICHE
total Bullycorth, 67 (LUCA, - Tot. 0834/646747 - 76x. 8834/01/00)
PRO-1000 Control Co

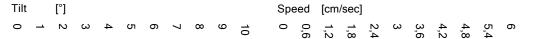

GEOPROVE #

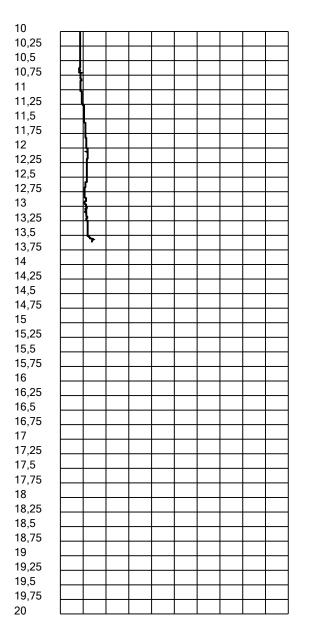
Depth [cm]	Qc [MPa]	Fs [KPa]	U2 [KPa]	Rf [%]	Tilt [°]	Speed [cm/sec]
1265	1,766858	44,344555	263,786765	2,509797	1,0981	1,9
1270	1,568217	48,712063	415,900735	3,106206	1,062175	1,8
1275	2,294825	61,750829	77,849265	2,690873	1,062175	1,9
1280	3,031887	61,591431	38,051471	2,031455	1,062175	6,8
1285	2,441192	61,495792	17,1875	2,519089	1,062175	1,9
1290	1,275484	66,437133	19,852941	5,20878	1,126031	2
1295	4,401464	58,403469	81,709559	1,32691	1,062175	1,9
1300	5,535808	43,451926	67,003676	0,784925	1,126031	1,9
1305	6,602196	24,929865	63,143382	0,3776	1,0981	1,9
1310	8,562467	22,379495	56,893382	0,261367	1,079078	1,9
1315	8,907475	19,191533	52,113971	0,215454	1,137444	1,9
1320	8,531103	15,971691	1,930147	0,187217	1,179866	1,9
1325	7,689493	21,901301	3,676471	0,284821	1,197289	1,9
1330	7,396759	33,76052	-29,963235	0,456423	1,197289	1,9
1335	7,260847	39,530732	-40,808824	0,544437	1,197289	1,9
1340	7,992682	42,399898	-53,125	0,530484	1,197289	1,8
1345	8,808155	46,608008	-10,9375	0,529146	1,197289	1,8
1350	11,108207	52,697016	-16,727941	0,474397	1,197289	1,8
1355	12,801882	43,005611	-61,029412	0,335932	1,296867	1,8
1360						2
1300	16,178777	28,69166	-39,338235	0,177341	1,381842	2

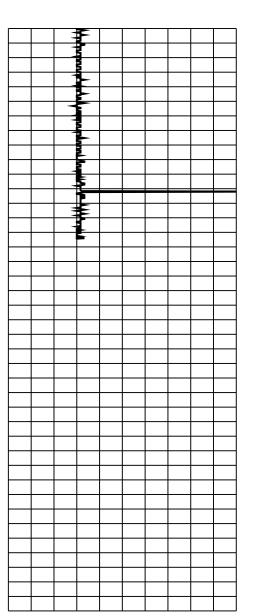


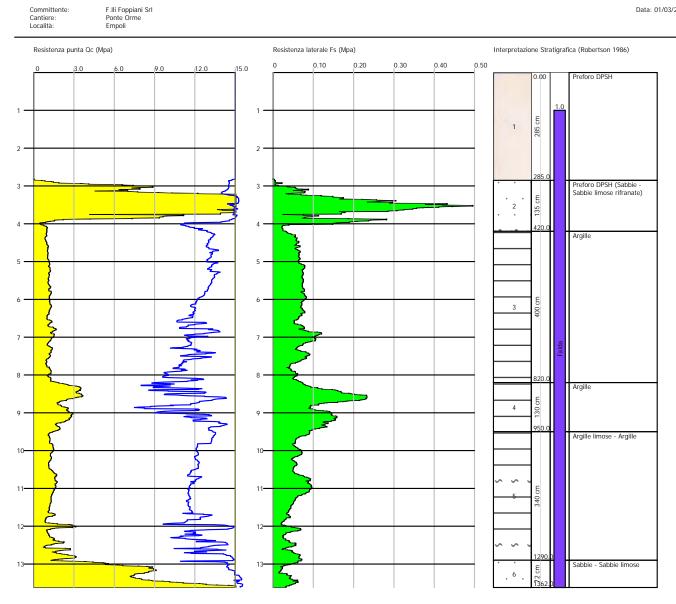












Probe CPTU - Piezocone CPTU 2 Strumento utilizzato PAGANI 200 kN (CPTU)

Committente: Cantiere: Località: Data: 01/03/2021

IL RESPONSABILE DEL SITO Pag. 1 Scala 1:100 IL DIRETTORE

STIMA PARAMETRI GEOTECNICI CPTU 1

TERRENI COESIV I

TERRENI COESIV I Coesione non drenata (KPa)								
Prof. Strato (m)	qc		Eide Re		Lunne T Kleven A. 1981	Kjekstad. 1978 - Lunne, Robertson and Powell 1977	Lunne, Robertson and Powell 1977	Terzaghi
Strato 1 1.70 Strato 2 2.80	0.022 7.169	0.001 0.118	0.67 345.57	1.15 310.95	0.92 476.08	0.81 420.07	0.73 375.85	0.98 358.92
Strato 3 3.00	0.557	0.046	25.81	40.13	34.38	30.33	27.14	27.46
Modulo Edometrico (Mpa) Prof. Stra	nto qc	fs	, \	litchell &	Meto	do Rui	smann	Buismann
(m)	(Mpa			dner (1975		e del Ilo	Silidilii	Sanglerat
		0.022 7.169	0.001 0.118	0.1 17.9	8	0.14 14.34	0.33 21.51	0.07 10.75
		0.557	0.046	4.4		2.97	8.36	1.67
Modulo di deformazione non	n drenato Eu (M			fs		Cancelli 1980	Lodd	1077 (20)
	(m)	qc (Mpa)		(Mpa)				1977 (30)
Strato 1 Strato 2	1.70 2.80		0.022 7.169		0.001 0.118		0.52 3.25	0.03 10.77
Strato 3	3.00		0.557		0.046	20	0.04	0.82
Modulo di deformazione a ta				C		G 1 :	M	1 1 1
f	Prof. Strato (m)	qc (Mpa)		fs (Mpa)		Correlazione	defor	odulo di mazione a taglio (Mpa)
Strato 1	1.70		0.022			Imai & Toma	achi	1.10
Strato 2 Strato 3	2.80 3.00		7.169 0.557			Imai & Toma Imai & Toma		37.80 7.94
Grado di sovraconsolidazion	ie							
	Prof. Stra (m)	to	qc (Mpa)			s pa)	Stress-	History
Strato 1 Strato 2		1.70 2.80	` •	0.022 7.169		0.001 0.118		<0.5 >9
Strato 3		3.00		0.557		0.046		0.57
Peso unità di volume	2.00			2			_	
	Prof. Strato (m)	qc (Mpa)		fs (Mpa)		Correlazione	(H	ità di volume (N/m³)
Strato 1 Strato 2	1.70 2.80		0.022 7.169		0.001 0.118	Meye Meye		11.19 21.48
Strato 3	3.00		0.557		0.046	Meye		17.21
Peso unità di volume saturo) C 54 4			C		C 1 :	D	·() 1: 1
	Prof. Strato (m)	qc (Mpa)		fs (Mpa)		Correlazione	: (H	ità di volume saturo (N/m³)
Strato 1 Strato 2	1.70 2.80		0.022 7.169		0.001 0.118	Meye Meye		11.97 22.26
Strato 3	3.00		0.557		0.046	Meye		17.99
TERRENI INCOERENT I Densità relativa (%)	I							
Prof. Strato	qc	fs	Baldi 1978		ertman F	Harman L		Jamiolkowsk
(m)	(Mpa)	(Mpa)	Schmertm n 1976		1		1983	i 1985
Strato 2 2.86 Strato 4 3.7				3.1 5.1	100 80.78	100 79.87	84.08 65.93	94.36 67.25

Angolo di resistenza al taglio (°)

	Prof. Strato (m)	qc (Mpa)	fs (Mpa)	Durgunou glu- Mitchell 1973	Caquot		jan De		Schmert mann	n & Campanel la 1983	r	Meyerhof 1951
Strato 2 Strato 4	2.80 3.71	7.169 5.021	0.118 0.031	43.27 39.07	40.2 35.69			35.08 30.74	42 39.31	45 43.8	41.64 32.43	
Modulo di Y	Young (Mpa	a)										
]	Prof. Strato (m)		qc (Mpa)		s [pa]	Sch	mertm		obertson & Campanella (1983)		PT-1 1988 Ey(50)
	trato 2 trato 4		2.80 3.71	7.169 5.021		0.11 0.03			17.92 12.55	14. 10.		28.68 31.66
Modulo Edo				2	n 1				** 11	200.1	11.0	
	Prof. S (m		qc (Mpa)	fs (Mpa)	Camp co Schmo	tson & panella la ertman	n 198 Rober and Po	fferse 33 - tson well	Kulhawy Mayne 19	- Mitch 90 Gardne		Buisman - Sanglerat
Strato	. 2	2.80	7.169	0.11	8	8.15	199	7 28.12	57	.47	12.19	10.75
Strate		3.71	5.021	0.03		6.73		19.70		.51	8.54	7.53
Modulo di d	leformazior											_
		Prof. S (m		qc (Mpa			fs (Mpa)		Correlazio	ne	(Mpa)	G
	Strato 2 Strato 4		2.80 3.71	\ 1	7.169 5.021			0.118 0.031		Tomauchi Tomauchi	1 /	37.80 30.41
Grado di so					C	G.	TT' .	D.		T 1	001 7 1	1 5
		f. Strato (m)	qc (Mpa)		fs Лра)	Stress-	-History		acentini ghi 1978	Larsson 1 S.G.I.		
	ito 2 ito 4	2.80 3.71		7.169 5.021	0.118 0.031		>9 4.3		>9 >9		<0.5 0.88	>9 >9
Modulo di r	eazione Ko						C		G 1			17
		Prof. S (m		qc (Mpa			fs (Mpa)		Correl	azione		Ko
	Strato 2	Ì	2.80	` •	7.169			0.118	Kulhawy	& Mayne (1990)		0.00
	Strato 4		3.71		5.021			0.031	Kulhawy	(1990) & Mayne (1990)		0.90
Fattori di co	mpressibili	tà C Crm										
		Prof. S (m		qc (Mpa			fs (Mpa)		(C	(Crm
	Strato 2 Strato 4	(III)	2.80 3.71	(IVI)	7.169 5.021			0.118 0.031		0.09805 0.10511		0.01275 0.01366
Peso unità d	i volume											
		Prof. S (m		qc (Mpa			fs (Mpa)		Correl	azione		à di volume N/m³)
	Strato 2 Strato 4		2.80 3.71	(1	7.169 5.021			0.118 0.031		Meyerhof Meyerhof		18.63 18.63
Peso unità d	i volume sa											
		Prof. S (m		qc (Mpa			fs (Mpa)		Correl	azione	Sa	à di volume turo N/m³)
	Strato 2 Strato 4		2.80 3.71		7.169 5.021			0.118 0.031		Meyerhof Meyerhof	·	21.57 1.57

STIMA PARAMETRI GEOTECNICI CPTU 1 bis

TERRENI CO Coesione non d		Pa)										
Р	rof. Strato (m)	(Мр.		Mpa)	Lunne & Eide	Sur Relaz Sperin	zione nental	Lunne T Kleven A. 1981	1978 - Lunne, Robertson and Powe 1977	Robert and Po n 197 ll	tson well 7	Terzaghi
Strato 2	6.00) 2	2.672	0.031	130.60	1	65.36	177.3	5 156.4	4 8 14	10.01	133.37
Modulo Edome					2		1 11 0	3.5			-	
	Prof. S (m		qc (Mpa)	(1	fs Mpa)		chell & er (1975	Met 5) genera mod edom	ile del Iulo	Buismann		uismann anglerat
Strato 2	2	6.00	2	.672	0.031		6.6	8	5.34	8.0)2	8.02
Modulo di defo	rmazione			oa)								
		Prof. S		qo (Mp			fs (Mpa)		Cancelli 19	080	Ladd 1	977 (30)
St	trato 2	(111)	6.00	(IVI)	2.672		(Ivipa)	0.031		101.37		4.00
Modulo di defo	rmazione	a taglio										
		Prof. S (m)		qc (Mp			fs (Mpa)		Correlazio		deform ta	lulo di azione a glio Ipa)
St	trato 2		6.00		2.672			0.031	Imai & Ton	nauchi		20.69
Grado di sovrac	consolidaz	ione										
			Prof. Strate	o		qc		-	fs	Stress-I	History	
	Strato 2)	(m)	6.00	(M	lpa)	2,672	(1	Mpa) 0.03	31		<0.5
		_										
Peso unità di vo	olume	Prof. S	trato	qc	·		fs		Correlazio	ne Pe	so unit	à di volume
		(m))	(Mp	oa)		(Mpa)					N/m^3)
	trato 2		6.00		2.672			0.031	Me	yerhof		19.88
Peso unità di vo	olume satu	ro Prof. S	trato	qc	•		fs		Correlazio	ne Pe	so unit	à di volume
		(m)		(Mp			(Mpa)		Correlazio	10	sa	turo N/m³)
Si	trato 2		6.00		2.672			0.031	Me	yerhof	(20.66
TERRENI INC Densità relativa		ΤΙ										
	Prof. Stra		qc	fs		1978 -				Lancellotta		miolkowsk
	(m)	(Mpa)	(Mpa)		ertman 976	1	1		1983	i 1	985
Strato 2 Strato 3		5.00 3.28	2.672 10.419	0.0 0.0	31	.710		0	0		0 0	90.66 89.34
Angolo di resist	tanzo ol to	alio (°)										
	rof.	qc	fs	Durgunou	Caquot	Koppe	jan D	e Beer S	chmert Ro	bertso He	rminie	Meyerhof
	trato (m)	Mpa)	(Mpa)	glu- Mitchell 1973				:	Can	n & npanel 1983	r	1951
Strato 2 Strato 3	6.00 8.28	2.672 10.419	0.031 0.087	0	0		0 0	0	28 28	0 0	15 15	
Suato 3	0.40	10.419	0.08/	U	Ü		U	U	40	U	13	43
Modulo di You		-£ C/ /				c_	C.	1	. D.1	40	ICO	T 1 1000
	Pro	of. Strato (m)		qc (Mpa)		fs Ipa)	Sc	hmertmanı	Camp	rtson & panella 983)		PT-1 1988 Ey(50)
Strat Strat			.00 .28	2.672 10.419		0.03			.68 .05	5.34 20.84		42.75 166.70

Modulo Edometrico (N	Мра)										
Prof. (n	Strato	qc (Mpa) (Mpa) Can	ertson & npanella da mertman	Lunr Christot n 198 Robert and Po	fferse 33 - tson well	Kulhawy- Mayne 1990	Mitch) Gardne		Buist Sang	nan - glerat
Strato 2 Strato 3	6.00 8.28	2.672 10.419	0.031 0.087	-0.29 0.17		10.48 22.40	22.2 88.8		5.34 15.63		13.36 15.63
Modulo di deformazio	ne a taglio										
	Prof. S		qc (Mpa)		fs (Mpa)		Correlazione		(Mpa)	G	
Strato 2 Strato 3	,	6.00 8.28	2.67 10.41			0.031 0.087	Imai & T Imai & T	omauchi			20.69 47.51
Grado di sovraconsolio			0	G.	TT' .	ъ.			201 7	11 -	
Pro	of. Strato (m)	qc (Mpa)	fs (Mpa)	Stress	-History		acentini l ghi 1978	Larsson 1 S.G.I.		add e F 977	oot
Strato 2	6.00	2.672	0.03	31	< 0.5		<0.5		< 0.5	, , ,	>9
Strato 3	8.28	10.419	0.08	37	< 0.5	;	< 0.5		< 0.5		>9
Modulo di reazione Ko)										
	Prof. S (m)		qc (Mpa)		fs (Mpa)		Correlaz	ione		Ko	
Strato 2	(III)	6.00	2.67	72		0.031	Kulhawy &	& Mayne (1990)			0.00
Strato 3		8.28	10.41	9		0.087	Kulhawy &	,			0.00
Fattori di compressibil	ità C Crm										
•	Prof. S (m)		qc (Mpa)		fs (Mpa)		С			Crm	
Strato 2 Strato 3		6.00 8.28	2.67 10.41			0.031 0.087		0.11581 0.09414			0.01506 0.01224
Peso unità di volume											
	Prof. S (m))	qc (Mpa)		fs (Mpa)		Correlaz			nità di v KN/m³	
Strato 2 Strato 3		6.00 8.28	2.67 10.41			0.031 0.087		Meyerhof Meyerhof			18.63 18.63
Peso unità di volume s	aturo										
	Prof. S (m)		qc (Mpa)		fs (Mpa)		Correlaz	ione		nità di v saturo KN/m³	volume)
Strato 2 Strato 3		6.00 8.28	2.67 10.41			0.031 0.087		Meyerhof Meyerhof		21.57	21.57

STIMA PARAMETRI GEOTECNICI CPTU 2

TER	RENI	COESIV	I

Coesione non dre											
	f. Strato (m)	qc (Mpa)	fs (Mpa)	Lunne & Eide	& Sur Relaz Sperin e	zione nental	Lunne T Kleven A. 1981	Kjeksta 1978 Lunno Roberta and Pov 1977	- Ro e, and son well	Lunne, obertson d Powell 1977	Terzaghi
Strato 3 Strato 4 Strato 5	8.20 9.50 12.90	1.132 2.499 1.411	0.065 0.132 0.053	118	.80 .59 1 .94	77.40 50.28 87.87	70.85 158.52 82.94	2 13	2.52 9.87 3.18	55.93 125.14 65.48	124.54
Modulo Edometri	co (Mna)										
	Prof. Strat (m)	o q (M _I		fs (Mpa)		chell & er (1975	Meto 5) genera mod edome	le del ulo	Buisma	ınn	Buismann Sanglerat
Strato 3 Strato 4 Strato 5	9	.20 .50 90	1.132 2.499 1.411	0.1)65 132)53	5.6 6.2 7.0	56 25	4.54 5.00 4.75		6.79 7.50 8.47	3.40 7.50 4.23
Modulo di deforn			Mpa)								
	Pı	of. Strato (m)	(qc Mpa)		fs (Mpa)		Cancelli	1980	Ladd	1 1977 (30)
Stra	ato 3 ato 4 ato 5	8.2 9.5 12.9	20 50	1.1 2.4	132 199 111	(1.1pa)	0.065 0.132 0.053		41.77 92.05 50.41		1.71 3.74 2.12
Modulo di deforn	nazione a tag	glio									
		rof. Strato (m)	(qc Mpa)		fs (Mpa)		Correlaz	rione	defo	odulo di rmazione a taglio (Mpa)
Stra	ato 3 ato 4 ato 5	8.2 9.5 12.9	50	2.4	132 199 111		0.065 0.132 0.053	Imai & T Imai & T Imai & T	omauchi	i i	12.24 19.86 14.00
Grado di sovracon	nsolidazione	Prof. St	rata		ac			fs		Ctrass	-History
		(m)	iaio		qc (Mpa)			ля Лра)		Sucss-	THStory
	Strato 3 Strato 4 Strato 5		8.20 9.50 12.90			1.132 2.499 1.411		0	.065 .132 .053		1.44 1.31 <0.5
Peso unità di volu										_	
	Pı	of. Strato (m)	(qc Mpa)		fs (Mpa)		Correlaz	none		ità di volume KN/m³)
Stra	ato 3 ato 4 ato 5	8.2 9.5 12.9	50	2.4	132 199 111		0.065 0.132 0.053	N	Aeyerhof Aeyerhof Aeyerhof		18.42 19.72 18.73
Peso unità di volu	ıme saturo										
		rof. Strato (m)	(qc Mpa)		fs (Mpa)		Correlaz	zione		nità di volume saturo KN/m³)
Stra	ato 3 ato 4 ato 5	8.2 9.5 12.9	50	2.4	132 199 111		0.065 0.132 0.053	N	Aeyerhof Aeyerhof Aeyerhof	?	19.20 20.50 19.51
TERRENI INCO Densità relativa (%)			D	14: 1070	g 1		II	T	11 - 44	T (- 11
	Prof. Strato (m)	qc (Mpa)	fs (Mpa	a) Scl	ldi 1978 - hmertman n 1976		1	Harman	Lance 1983	i	Jamiolkowsk i 1985
Strato 2 Strato 6	4.20 13.62	10.06 8.56		0.139 0.036	63.72		0 68.96	70.1	0 8	0 64.53	100 41.93
Angolo di resister	nza al taglio	(°)									

	Prof. Strato (m)	qc (Mpa)	fs (Mpa)	Durgunou glu- Mitchell 1973	Caquot	Koppe	jan De	Beer	Schmert mann	Robertso n & Campanel la 1983	Herminie r	Meyerhof 1951
Strato 2 Strato 6	4.20 13.62	10.061 8.568	0.139 0.036	0 36.38	0 32.55		0 9.7	0 27.74	28 37.65	0 40.61	15 27.69	
			0.050	30.30	32.33	_	<i>.</i> ,,	27.7	37.03	10.01	27.0	
Modulo di Y		Prof. Strato		qc	f	ŝ	Sch	mertm		obertson &		PT-1 1988
		(m)		(Mpa)	(M	[pa]				Campanella (1983)		Ey(50)
	trato 2 trato 6		.20 .62	10.061 8.568		0.13 0.03			25.15 21.42	20. 17.		160.98 66.19
Modulo Edo	metrico (M	Ipa)										
	Prof. S (m		qc Mpa)	fs (Mpa)	Camp d Schme	tson & panella la ertman	Lum Christo n 198 Rober and Po	fferse 33 - tson owell	Kulhawy Mayne 19	y- Mitch 190 Gardne		Buisman - Sanglerat
Strato Strato		4.20 13.62	10.061 8.568	0.13 0.03		0.20 6.62	199	21.69 33.61		1.28 7.05	15.09 14.57	15.09 12.85
			0.300	0.03	00	0.02		33.01	07	.03	14.37	12.63
Modulo di d	eformazior	e a taglio Prof. S	trato	qc			fs		Correlazio	ne		G
		(m))	(Mpa			(Mpa)	0.420			(Mpa)	
	Strato 2 Strato 6		4.20 13.62		10.061 8.568			0.139 0.036		Tomauchi Tomauchi		46.50 42.15
Grado di sov	raconsolid	azione										
		. Strato (m)	qc (Mpa)		fs Apa)	Stress	-History		acentini ghi 1978	Larsson 1 S.G.I.		d e Foot
Stra	to 2	4.20	10	0.061	0.139		< 0.5	5	< 0.5		< 0.5	>9
Stra		13.62	8	3.568	0.036		2.28	3	>9		1.33	>9
Modulo di re	eazione Ko	Prof. S	trato	qc			fs		Correl	lazione]	Ko
	Strato 2	(m)	4.20	(Mpa	a) 10.061		(Mpa)	0.139	Kulhowa	y & Mayne		0.00
	Suato 2		4.20		10.001			0.139	Kuillaw	(1990)		0.00
	Strato 6		13.62		8.568			0.036		y & Mayne (1990)		0.60
Fattori di co	mpressibili	tà C Crm										
		Prof. S (m)		qc (Mpa	a)		fs (Mpa)		(C	C	Crm
	Strato 2 Strato 6		4.20	` 1	10.061			0.139 0.036		0.09433		0.01226
			13.62		8.568			0.030		0.09569		0.01244
Peso unità d	i volume	Prof. S	trato	qc			fs		Correl	lazione	Peso unit	à di volume
		(m))	(Mpa			(Mpa)		Conci			N/m^3)
	Strato 2 Strato 6		4.20 13.62		10.061 8.568			0.139 0.036		Meyerhof Meyerhof		18.63 18.63
Peso unità d	i volume sa											
		Prof. S (m)		qc (Mpa	a)		fs (Mpa)		Correl	lazione	sa	à di volume turo
	Strato 2		4.20		10.061			0.139		Meyerhof		N/m³) 21.57
	Strato 6		13.62		8.568			0.036		Meyerhof		21.57

STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI

via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DEL NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI

ALL. N° 4 – PROSPEZIONI SISMICHE

COMUNE DI EMPOLI PROVINCIA DI FIRENZE

Località: Pontorme

PROSPEZIONE DOWNHOLE

MISURE DI RUMORE SISMICO AMBIENTALE A STAZIONE SINGOLA

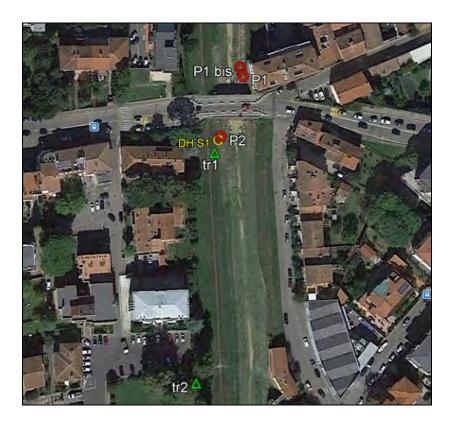
Committente: F.LLI FOPPIANI S.r.l.

RELAZIONE TECNICA

INDICE

PREMESSA	3
1. PROSPEZIONI SISMICHE IN FORO TIPO DOWNHOLE	2
1. Generalità	2
2. Sorgenti e strumentazione	3
3. Risultati delle prove in foro	8
2. MISURE DI RUMORE AMBIENTALE A STAZIONE SINGOLA	10

COMUNE DI EMPOLI Località: Pontorme

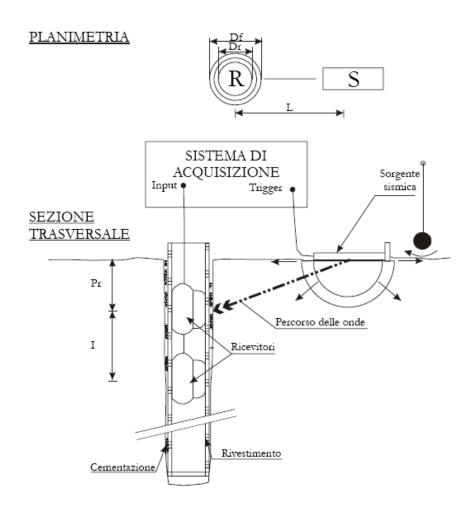

PREMESSA

Per incarico della Soc. F.lli Foppiani S.r.l. sono state effettuate indagini sismiche presso il ponte sul Torrente Orme in Comune di Empoli, loc. Pontorme.

Le indagini, finalizzate alla ricostruzione stratigrafica, geotecnica e sismostratigrafica del sottosuolo ed alla definizione dell'azione sismica locale ai sensi del vigente D.M. 17 Gennaio 2018 – *Norme tecniche per le costruzioni*, sono state condotte mediante le seguenti tecniche:

- 1) Prospezione sismica tipo downhole
- 2) misure del rumore sismico ambientale a stazione singola H/V

L'ubicazione delle indagini è riportata nella seguente immagine satellitare di Google Earth.


Le presenti note illustrano la metodologia delle indagini ed i risultati conseguiti.

1. PROSPEZIONI SISMICHE IN FORO TIPO DOWNHOLE

1. Generalità

La prova downhole consiste nel produrre, sulla superficie del terreno, una sollecitazione orizzontale mediante una sorgente meccanica, e nello studiare il treno d'onde, P e S, che si propagano all'interno del terreno alle varie profondità in direzione verticale, con vibrazioni polarizzate nella direzione di propagazione (onde P), e dirette perpendicolarmente alla direzione di propagazione, polarizzate su un piano orizzontale (onde SH). Mediante due ricevitori (geofoni) disposti nel terreno, a profondità note, viene valutato l'istante di arrivo del treno di onde P e S, rispetto all'istante in cui vengono indotte le sollecitazioni alla sorgente; dividendo quindi per tali valori la distanza (nota) tra sorgente e ricevitori, si può ricavare la velocità delle onde P e S.

Lo schema di acquisizione della prova è il seguente:

Per le caratteristiche del foro, della tubazione di rivestimento e della cementazione si rimanda al log stratigrafico del sondaggio eseguito sotto la DL dello Studio di Geologia Barsanti, Sani & Ass.ti.

2. Sorgenti e strumentazione

Come **sorgenti** energizzanti sono stati utilizzati: per le onde P una mazza da 10 kg con piattello di battuta; per le onde SH un parallelepipedo (traversina) di legno sovraccaricato dal peso di un penetrometro Pagani TG 63-200 e percosso sulle estremità opposte, in grado di generare onde SH di notevole contenuto energetico, uniformi sia nella direzione di propagazione sia nella polarizzazione (+ e -) e, di contro, con una generazione di onde P trascurabile.

È stato curato in modo particolare l'accoppiamento della traversina con il terreno, in accordo con le disposizioni fornite dalle Istruzioni Tecniche del Programma VEL della Regione Toscana.

Le sorgenti (onde P ed onde SH) sono state disposte perpendicolarmente ad un raggio uscente dai fori di sondaggio, ad una distanza di circa 3 m (per la misura precisa vedere lo schema di acquisizione dei sondaggi).

Il **sistema di ricezione** è costituito da una coppia di geofoni tridimensionali rigidamente collegati tra loro da una barra in p.v.c. (distanza intergeofonica i = 1.00 m) dotata di uno smorzatore intermedio in gomma in modo da evitare qualsiasi interazione sismica tra i due sensori. L'accoppiamento del sistema con le pareti del foro è garantito da 4 stantuffi pneumatici comandati dall'esterno, con pressione regolabile fino a 10 atm. L'orientazione assoluta del sistema viene mantenuta costante lungo tutto il foro mediante una batteria di aste in p.v.c..

Il **sistema di acquisizione** è costituito da un prospettore sismico EG&G GEOMETRICS *SMARTSEIS* a 24 canali avente le seguenti caratteristiche:

- Registrazione a 24 canali
- Impedenza di ingresso diff. 20 Kohm
- Impedenza di ingresso common mode: 5 Kohm
- Range dinamico: 100 dB
- Digitalizzatore a 16 bit
- Sommatoria dei segnali fino ad un massimo di 8.000 stacks
- Intervallo di campionamento selezionabile a: 31.25, 62.5, 125, 250, 500 µs
- Durata della registrazione: 64, 128, 256, 512 o 1.024 msec
- Possibilità di registrazione Autostack e Preview
- Possibilità di inversione della polarità (Stack polarity)
- Visore grafico a cristalli liquidi VGA 640x840 pixel 11"

- Stampante a plotter su carta termica
- Memoria su HD interno 40 Mb o su floppy 3.5" 1.44 Mb

Tutte le registrazioni sono state effettuate con metodo cross-over, ovverosia facendo la differenza tra un ugual numero di battute a destra ed a sinistra (bilanciamento energetico): in tal modo viene esaltato l'istante di primo arrivo delle onde SH, mentre vengono abbattute le eventuali onde P spurie.

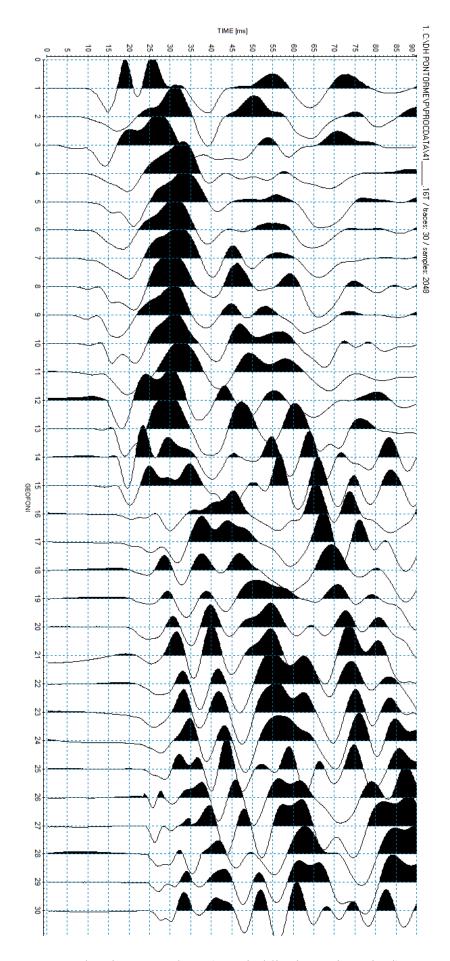
In particolare le tracce di ciascuna registrazione si riferiscono (dall'alto verso il basso):

- Traccia 7 canale n° 16: geofono controllo trigger
- Traccia 6 canale n° 12: primo geofono trasduttore verticale (z)
- Traccia 5 canale n° 11: primo geofono trasduttore orizzontale (x)
- Traccia 4 canale n° 10: primo geofono trasduttore orizzontale (y)
- Traccia 3 canale n° 9: secondo geofono trasduttore verticale (z)
- Traccia 2 canale n° 8: secondo geofono trasduttore orizzontale (x)
- Traccia 1 canale n° 7: secondo geofono trasduttore orizzontale (y)

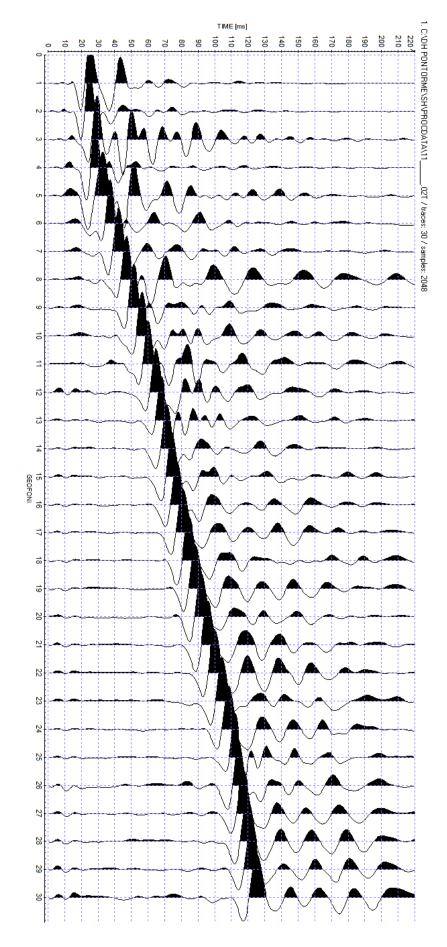
dove per primo geofono si intende quello più vicino alla superficie del terreno e per secondo quello posto 1.00 m più in basso.

La profondità alla quale ciascuna registrazione è stata effettuata è rilevabile su ciascuna registrazione alla voce "shot location".

Una volta determinata con qualche misura di prova l'orientazione assoluta più efficace del sistema per massimizzare l'ampiezza di ricezione dei ricevitori e la registrazione di tracce in opposizione di fase, sono state effettuate misure ogni metro di profondità, dall'alto verso il basso per le onde Sh e dal basso verso l'alto per le onde P.


La qualità delle registrazioni è stata generalmente buona: esaminati i tracciati delle registrazioni, si è scelto il set migliore e si è quindi proceduto all'assemblaggio delle tracce relative a ciascuna profondità di registrazione (in questo caso da 1 a 30 m con passo di 1.0 m) mediante il programma REFLEX, con il quale si è anche proceduto al picking dei primi arrivi (vedi pag seguenti) ed all'allineamento allo "zero" di trigger.

Per quanto riguarda la determinazione delle velocità di propagazione delle onde sismiche, mediante un'applicazione su foglio elettronico Excel (vedi tabulati allegati), i tempi di primo arrivo ("tempi obliqui") sono stati quindi corretti in funzione della geometria del sistema (posizione della sorgente rispetto al foro ed alla profondità di acquisizione) attraverso la formula:


dove z è la profondità del ricevitore, d è la distanza effettiva tra sorgente e ricevitore, R la distanza superficiale tra sorgente e dentro del foro, t il tempo determinato dalle tracce di registrazione e t* il tempo corretto.

$$t* = \frac{z}{d} \cdot t = \frac{z}{\sqrt{z^2 + R^2}} \cdot t$$

Le velocità dei vari strati, tenuto conto della stratigrafia del sondaggio S1 eseguito nello stesso contesto di indagini, sono state quindi determinate con la funzione di regressione lineare relativa a ciascuno degli intervalli rettilinei del diagramma tempi di arrivo-profondità b ("dromocrone"): le velocità sono state inoltre plottate in apposito diagramma in funzione della profondità ("velocità di intervallo"), a fianco delle quali è anche riportata la colonna stratigrafica del sondaggio per una immediata visualizzazione della rispondenza tra le variazioni di velocità Vp e Vs e le variazioni stratigrafiche. Sono stati infine determinati i rapporti Vp/Vs ed i conseguenti valori dei parametri dinamici: coefficiente di Poisson v, Modulo di taglio G, Modulo di Young E.

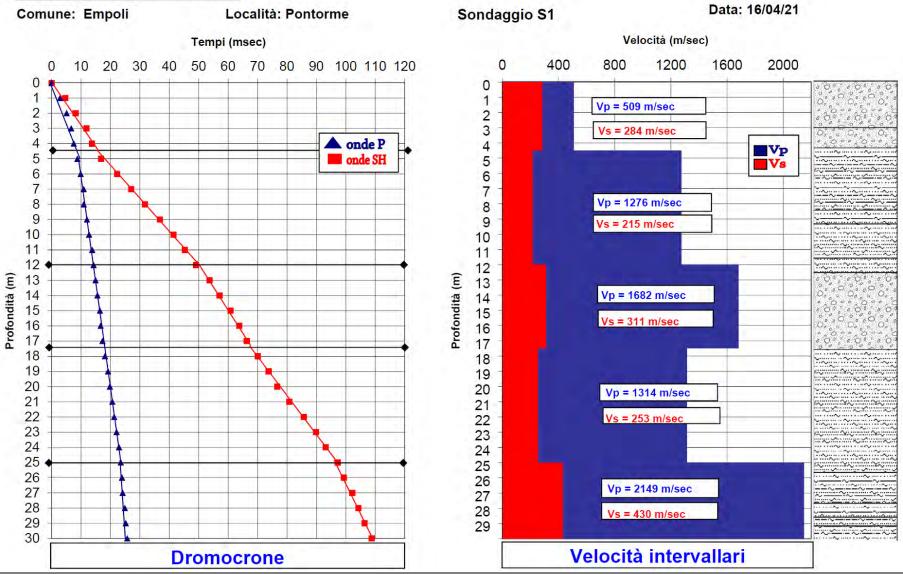
Sondaggio S1: Onde P (tempi obliqui – registrazioni)

Sondaggio S1: Onde Sh (tempi obliqui – registrazioni)

3. Risultati delle prove in foro

Geometria del sistema di acquisizione:

distanza foro - sorgente onde SH: m 3.0 distanza foro - sorgente onde P: m 3.0


ONDE I	ONGITUDIN	IALI VP		ONDE :	TRASVERS	ALI VS	
			Tempi corretti				
		Tempi letti	in funzione di			Tempi letti	Tempi corretti
		sulle tracce	Z			sulle tracce	in funzione di z
Regist.	Profondità	geofono	geofono	Regist.	Profondità	geofono	geofono
n°		tempo arrivo	tempo arrivo corretto	n°		tempo arrivo	tempo arrivo corretto
	P (m)	(msec)	(msec)		P(m)	(msec)	(msec)
***************************************	0.01		0.00		0.01	***************************************	0.00
41	1.00	8.98	2.84	11	1.00	14.69	4.65
42	2.00	9.18	5.09	12	2.00	14.69	8.15
43	3.00	9.39	6.64	13	3.00	16.73	11.83
44	4.00	9.39	7.51	14	4.00	17.14	13.71
45	5.00	10.20	8.75	15	5.00	19.59	16.80
46	6.00	11.02	9.86	16	6.00	24.90	22.27
47	7.00	11.84	10.88	17	7.00	29.39	27.01
48	8.00	11.63	10.89	18	8.00	33.88	31.72
49	9.00	12.65	12.00	19	9.00	38.78	36.79
50	10.00	13.27	12.71	20	10.00	43.27	41.45
51	11.00	14.29	13.79	21	11.00	46.94	45.29
52	12.00	14.69	14.25	22	12.00	50.61	49.10
53	13.00	15.31	14.92	23	13.00	55.10	53.69
54	14.00	15.92	15.57	24	14.00	58.37	57.07
55	15.00	16.73	16.41	25	15.00	62.04	60.84
56	16.00	16.94	16.65	26	16.00	64.90	63.79
57	17.00	17.55	17.28	27	17.00	67.35	66.33
58	18.00	18.37	18.12	28	18.00	71.02	70.05
59	19.00	19.39	19.15	29	19.00	74.69	73.78
60	20.00	20.00	19.78	30	20.00	77.55	76.69
61	21.00	20.82	20.61	31	21.00	81.63	80.81
62	22.00	21.43	21.23	32	22.00	86.53	85.74
63	23.00	22.24	22.05	33	23.00	90.61	89.85
64	24.00	23.06	22.88	34	24.00	93.88	93.16
65	25.00	23.67	23.50	35	25.00	97.96	97.26
66	26.00	24.08	23.92	36	26.00	100.00	99.34
67	27.00	24.29	24.14	37	27.00	102.86	102.23
68	28.00	25.03	24.89	38	28.00	104.90	104.30
69	29.00	25.32	25.19	39	29.00	106.94	106.37
70	30.00	25.80	25.67	40	30.00	109.39	108.85

Tempi obliqui (registrazioni) e tempi corretti in funzione della profondità

	Velocità	calcolate		Pa	rametri dina	amici deriv	ati
				Rapporto	Densità	Modulo di	Modulo di
Profondità m	Vp	Vs	Vp/Vs	Poisson	Gamma	taglio G	Young E
				FUISSUIT	(kg/dmc)*	(kg/cmq)	(kg/cmq)
0-4.5	509	284	1.79	0.27	1.76	1447	3690
4.5-12	1276	215	5.93	0.49	1.65	776	2306
12-17.5	1682	311	5.41	0.48	1.81	1780	5277
17.5-25	1314	253	5.20	0.48	1.71	1114	3301
25-30	2149	430	4.99	0.48	1.96	3696	10934
* valori stima	ti secondo K	eceli : g = (4					

Velocità e parametri dinamici derivati

2. MISURE DI RUMORE AMBIENTALE A STAZIONE SINGOLA

Sono state effettuate due misure di rumore sismico ambientale a stazione singola (TR1-TR2) ubicate come nell'immagine satellitare di Google Earth in premessa. In particolare, la misura TR1 è stata eseguita in adiacenza all'indagine downhole DHS1.

Le misure hanno avuto un duplice scopo: 1) misurare le frequenze di vibrazione naturali del sottosuolo del sito; 2) sulla base dei dati stratigrafici e sismici disponibili, estendere i profili delle velocità delle onde S a profondità maggiori dei 30 m ottenuti con le indagini downhole, attraverso la modellazione in avanti (*forward modelling*) di una delle curve H/V ottenute dalle misure di microtremore.

Metodologia e strumentazione

È stata utilizzata la tecnica HVSR (Horizontal to Vertical Spectral Ratio) con tromografo digitale (indagine sismica con metodologia dei microtremori). La misura del rumore sismico ambientale è stata acquisita con strumentazione tromografica portatile, dotata di tre canali di acquisizione connessi a tre velocimetri elettrodinamici ad alta risoluzione, in grado di misurare le componenti della velocità (moto) di ogni strato lungo le direzioni N-S; E-W; H-V.

L'elaborazione del microtremore registrato fornisce i rapporti spettrali HVSR o H/V (Nogoshi & Igarashi, 1970) e consente di stimare le frequenze fondamentali di risonanza del sottosuolo.

Per gli aspetti teorici essenziali e le principali applicazioni si veda, fra gli altri, Nakamura (1989), SESAME projet (2004), Castellaro e Mulargia (2009a, 2009b), Albarello et alii (2011), Albarello e Castellaro (2011), Mucciarelli e Gallipoli (2011).

Il microtremore sismico è stato registrato con un tromografo digitale della ditta Micromed (*TROMINO* modello TRZ-0101/01-10) e successivamente analizzato ed elaborato attraverso il software dedicato *GRILLA*.

Dalle registrazioni del rumore sismico sono state ricavate le curve H/V utilizzando i seguenti parametri:

- Tempo di acquisizione: 30 min
- Frequenza di campionamento: 128 Hz
- Larghezza delle finestre d'analisi: 30 s
- Lisciamento secondo finestra triangolare con ampiezza pari al 10% della frequenza centrale.

Di seguito sono riportati, per ogni misura eseguita, i report delle analisi lisciate al 10% che mostrano, in funzione della frequenza, i valori dei rapporti spettrali H/V e l'ampiezza delle singole componenti.

Le misure sono caratterizzate da inversioni di velocità che possono mascherare l'ampiezza dei picchi H/V: si osserva in entrambe le misure un primo largo picco (tra 0.8 e 2 Hz in Tr1 e tra 1 e 1.5 Hz in Tr2), correlabile con il passaggio tra le alluvioni superficiali ed i depositi pliocenici fluviolacustri a profondità dell'ordine di 25÷30 m (come già evidenziato dal sondaggio S1 e dalla relativa downhole) e con successivi incrementi di rigidità sismica. Un secondo picco a frequenze dell'ordine di 0.45÷0.5 Hz è riferibile ad un passaggio depositi fluviolacustri – bedrock (benché alterato) o ad incrementi di rigidità sismica all'interno degli stessi depositi fluviolacustri, a circa 215÷230 m di profondità.

EMPOLI PONTORME, TR1

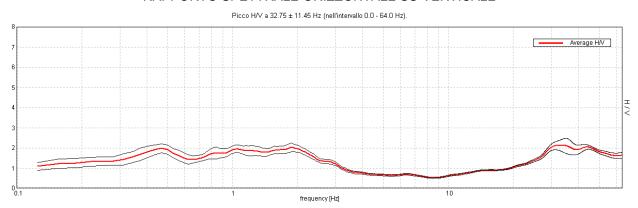
Strumento: TRZ-0101/01-10

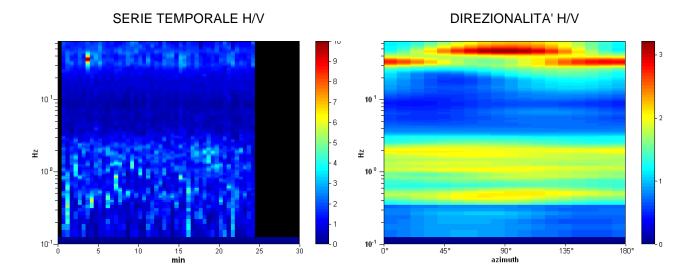
Formato dati: 16 byte Fondo scala [mV]: n.a.

Inizio registrazione: 16/04/21 13:28:58 Fine registrazione: 16/04/21 13:58:59

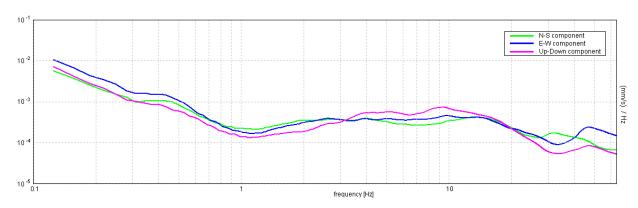
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

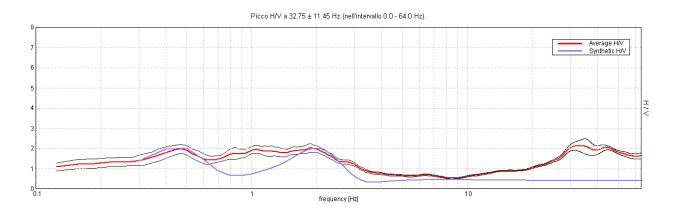

Durata registrazione: 0h30'00". Analizzato 80% tracciato (selezione manuale)


Freq. campionamento: 128 Hz Lunghezza finestre: 30 s

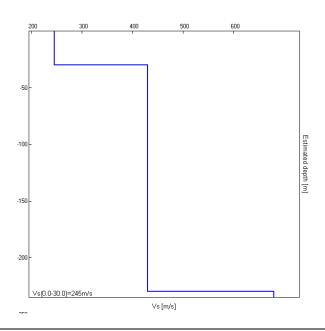
Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE



SPETTRI DELLE SINGOLE COMPONENTI



H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
30.00	30.00	245	0.48
230.00	200.00	430	0.48
inf.	inf.	680	0.40

Vs(0.0-30.0)=245m/s

Picco H/V a 32.75 \pm 11.45 Hz (nell'intervallo 0.0 - 64.0 Hz).

	una curva H/V affidabile ebbero risultare soddisfatti]	,	
$f_0 > 10 / L_w$	32.75 > 0.33	OK	
$n_c(f_0) > 200$	47160.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 1525	ок	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
	r un picco H/V chiaro dovrebbero essere soddisfatti	1	
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	20.25 Hz	OK	
Esiste f * in [f ₀ , 4f ₀] $A_{H/V}(f^{+}) < A_{0} / 2$			NO
A ₀ > 2	2.12 > 2	OK	
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.34956 < 0.05		NO
$\sigma_f < \varepsilon(f_0)$	11.4481 < 1.6375		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.2558 < 1.58	OK	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f ₀	frequenza del picco H/V
σf	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^{-1}) < A_0/2$
f +	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
σ _A (f)	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva
()	A _{H/V} (f) media deve essere moltiplicata o divisa
σιogH/√(f)	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Valo	ri di soglia pe	r σ _f e σ _A (f ₀)		
Intervallo di freq. [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0)$ per $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

EMPOLI PONTORME, TR2

Strumento: TRZ-0101/01-10

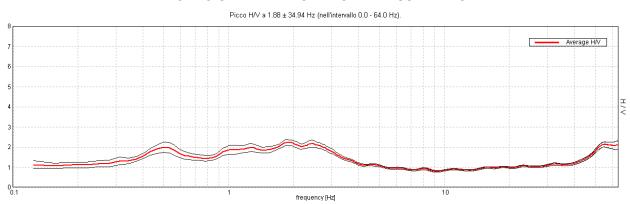
Formato dati: 16 byte Fondo scala [mV]: n.a.

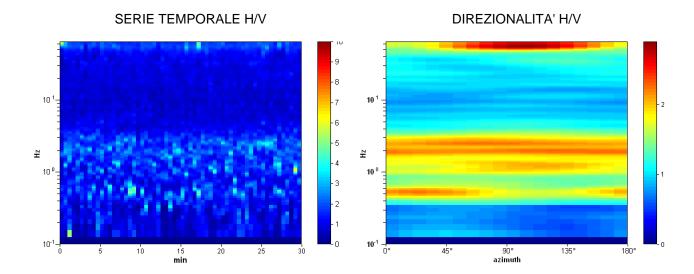
Inizio registrazione: 16/04/21 16:30:47 Fine registrazione: 16/04/21 17:00:48

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

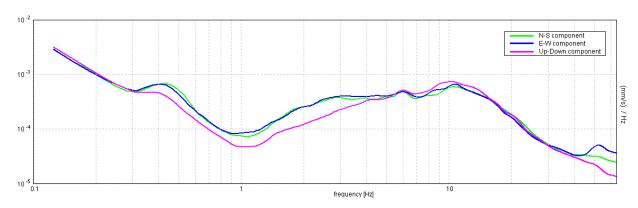
Dato GPS non disponibile

Durata registrazione: 0h30'00". Analisi effettuata sull'intera traccia.

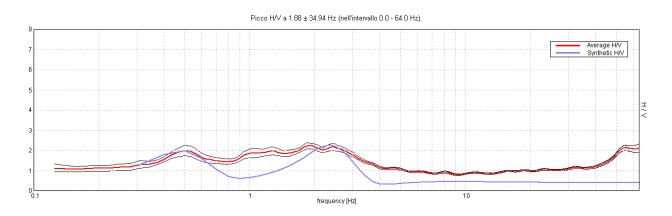

Freq. campionamento: 128 Hz


Lunghezza finestre: 30 s

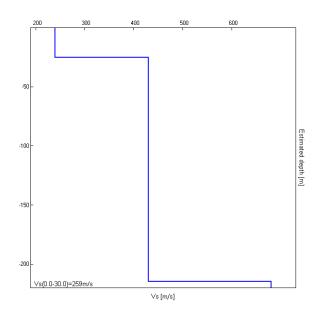
Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE



SPETTRI DELLE SINGOLE COMPONENTI



H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
25.00	25.00	240	0.48
215.00	190.00	430	0.48
inf.	inf.	680	0.40

Vs(0.0-30.0)=259m/s

Picco H/V a 1.88 ± 34.94 Hz (nell'intervallo 0.0 - 64.0 Hz).

	una curva H/V affidabile rebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	1.88 > 0.33	OK	
$n_c(f_0) > 200$	3375.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5\text{Hz}$	Superato 0 volte su 91	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
•	r un picco H/V chiaro dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$			NO
Esiste f + in [f ₀ , 4f ₀] $A_{H/V}(f +) < A_0 / 2$	4.156 Hz	OK	
A ₀ > 2	2.23 > 2	OK	
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	18.63581 < 0.05		NO
$\sigma_f < \varepsilon(f_0)$	34.94213 < 0.1875		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.1503 < 1.78	OK	

L _w	lunghezza della finestra
n_w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σf	deviazione standard della frequenza del picco H/V
ε(f ₀)	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^{-1}) < A_0/2$
f +	frequenza tra f ₀ e 4f ₀ alla quale A _{H/V} (f +) < A ₀ /2
σ _A (f)	deviazione standard di A _{H/V} (f), σ _A (f) è il fattore per il quale la curva
()	A _{H/V} (f) media deve essere moltiplicata o divisa
σlogH/√(f)	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Valo	ri di soglia pe	σ _f e σ _A (f ₀)											
Intervallo di freq. [Hz]	·													
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀									
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58									
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20									

Lucca, 20/04/21

GEOPROVE S.A.S. Socio Accomandatario e Direttore Tecnico Dr. Pietro Barsanti

GEOPROVE S.a.S.

STUDIO DI GEOLOGIA BARSANTI, SANI & ASSOCIATI

via Buiamonti 29 - 55100 LUCCA - Partita IVA: 01134410461 Tel. 0583/467427 Fax. 0583/91090 e-mail: bar-sani@geoprove.com

ING. AMEDEO ROMANINI

INDAGINI GEOLOGICHE E SISMICHE DI SUPPORTO AL PROGETTO DEL NUOVO PONTE SUL T. ORME IN COMUNE DI EMPOLI - FI

ALL. N° 5 – VERIFICA POTENZIALE DI LIQUEFAZIONE

DATI GENERALI

PROGETTO E LOCALIZZAZIONE

Titolo lavoro: Ponte Orme Cliente: F.lli Foppiani S.r.l.

Data 23/04/2021

Normativa: Norme Tecniche Costruzioni 2018, Decreto 17 Gen. 2018

Fattore sicurezza normativa 1.25

FALDA

Profondità falda idrica 1 m

DATI SISMICI

Accelerazione Bedrock 0.12 Fattore amplificazione 0.12

Tipo Suolo: C-Sabbie, ghiaie mediamente addensate, argille di media consistenza Vs30=180-360 Morfologia: T1-Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i<=15°

Coefficiente amplificazione stratigrafica (SS)

Coefficiente amplificazione topografica (ST)

Magnitudo momento sismico (Mw)

Peak ground acceleration (PGA)

1.5

5.68

0.18

PARAMETRI GEOTECNICI

Strato	Descrizi	Quota	Quota	Peso	Peso	Numero	D50	Resisten	Resisten	Velocità
Nr	one	iniziale	finale	unità	unità	colpi	granuli	za qc	za	onde di
		(m)	(m)	volume	volume	medio	(mm)	(KPa)	attrito	taglio
				(KN/mc	saturo	(Nspt)			laterale	Vs
)	(KN/mc				fs	(m/s)
)				(KPa)	
1		0	4.3	20	21	15	0	9000	35	284
2		4.3	13	19	20	0	0	1200	70	211
3		13	17.5	20	21	0	0	9000	35	310

Robertson Wride, 1998

Correzione per la magnitudo (MSF) 2.04

Nr.	Profondit	Pressione	Pressione	Resistenz	Attrito	Indice	Correzione	Resistenz	Coefficie	Resistenz	Sforzo di	Coefficie	Suscettibilità		Rischio
INI.	à dal p.c. (m)	litostatica totale (KPa)		a alla punta	laterale	di compor	per la pressione litostatica	a alla punta corretta	nte	a alla liquefazi one	taglio normaliz	nte di	di	Indice	Kisemo
		, ,	,	zata Q	F(%)	o Ic	efficace CQ	qc1 (KPa)		(CRR)	(CSR)			azion e	
1	1.20	24.200	22.239	190.848	0.390	1.440	1.7	122.294	0.991	0.250	0.062	4.037	Terreno non suscettibile di liquefazione	0	Molto basso
2	1.40	28.400	24.477	181.912	0.390	1.457	1.7	125.802	0.989	0.265	0.066	4.021	Terreno non suscettibile di liquefazione	0	Molto basso
3	1.60	32.600	26.716	174.123	0.390	1.473	1.7	128.827	0.988	0.279	0.069	4.027	Terreno non suscettibile di liquefazione		Molto basso
4	1.80	36.800	28.955	167.257	0.390	1.488	1.7	131.469	0.986	0.291	0.072	4.045	Terreno non suscettibile di liquefazione		Molto basso
5	2.00	41.000	31.193	161.143	0.391	1.501	1.7	133.801	0.985	0.303	0.074	4.072	Terreno non suscettibile di liquefazione	0	Molto basso
6	2.20	45.200	33.432	155.654	0.391	1.514	1.7	135.880	0.983	0.313	0.076	4.103	Terreno non suscettibile di liquefazione	-	Molto basso
7	2.40	49.400	35.671	150.691	0.391	1.526	1.674342	135.669	0.982	0.312	0.078	3.998	Terreno non suscettibile di liquefazione		Molto basso
8	2.60	53.600	37.909	146.174	0.391	1.537	1.624152	133.218	0.980	0.300	0.080	3.766		0	Molto basso
9	2.80	57.800	40.148	142.040	0.391	1.548	1.578221	130.881	0.979	0.289	0.081	3.564		0	Molto

													suscettibile di liquefazione		basso
10	3.00	62.000	42.387	138.238	0.392	1.558	1.535979	128.654	0.977	0.278	0.082	3.386		0	Molto basso
11	3.20	66.200	44.625	134.726	0.392	1.568	1.496956	126.533	0.976	0.268	0.083	3.228	Terreno non suscettibile di liquefazione	0	Molto basso
12	3.40	70.400	46.864	131.469	0.392	1.577	1.460764	124.511	0.974	0.260	0.084	3.087	Terreno non suscettibile di liquefazione	0	Molto basso
13	3.60	74.600	49.103	128.437	0.392	1.586	1.427077	122.582	0.972	0.251	0.085	2.961	Terreno non suscettibile di liquefazione	0	Molto basso
14	3.80	78.800	51.341	125.606	0.392	1.594	1.395617	120.742	0.971	0.244	0.086	2.846	Terreno non suscettibile di liquefazione	0	Molto basso
15	4.00	83.000	53.580	122.954	0.393	1.602	1.36615	118.985	0.969	0.237	0.086	2.743	Terreno non suscettibile di liquefazione	0	Molto basso
16	4.20	87.200	55.819	120.463	0.393	1.610	1.338474	117.305	0.968	0.230	0.087	2.649	Terreno non suscettibile di liquefazione	0	Molto basso
17	4.40	91.300	57.957	19.130	6.314	2.978	1.7	132.712	0.966	0.297	0.087	3.400	Terreno non suscettibile di liquefazione	0	Molto basso
18	4.60	95.300	59.996	18.413	6.337	2.992	1.666776	133.017	0.965	0.299	0.088	3.394	Terreno non suscettibile di liquefazione	0	Molto basso
19	4.80	99.300	62.035	17.743	6.360	3.004	1.612	131.425	0.963	0.291	0.089	3.286	Terreno non suscettibile di	0	Molto basso

													liquefazione		
20	5.00	103.300	64.073	17.116	6.383	3.017	1.56071	129.912	0.962	0.284	0.089	3.187	Terreno non suscettibile di liquefazione	0	Molto basso
21	5.20	107.300	66.112	16.528	6.406	3.029	1.512583	128.471	0.960	0.277	0.090	3.096		0	Molto basso
22	5.40	111.300	68.151	15.975	6.430	3.042	1.467335	127.097	0.959	0.271	0.090	3.012	Terreno non suscettibile di liquefazione	0	Molto basso
23	5.60	115.300	70.189	15.454	6.453	3.053	1.424716	125.785	0.957	0.265	0.090	2.934	Terreno non suscettibile di liquefazione	0	Molto basso
24	5.80	119.300	72.228	14.962	6.477	3.065	1.384503	124.530	0.956	0.260	0.091	2.863	Terreno non suscettibile di liquefazione	0	Molto basso
25	6.00	123.300	74.267	14.498	6.501	3.076	1.346498	123.329	0.954	0.254	0.091	2.796	· ·	0	Molto basso
26	6.20	127.300	76.305	14.058	6.526	3.087	1.310523	122.179	0.953	0.250	0.091	2.734	Terreno non suscettibile di liquefazione	0	Molto basso
27	6.40	131.300	78.344	13.641	6.550	3.098	1.27642	121.075	0.951	0.245	0.092	2.676		0	Molto basso
28	6.60	135.300	80.383	13.245	6.575	3.109	1.244048	120.015	0.950	0.241	0.092	2.622	*	0	Molto basso
29	6.80	139.300	82.421	12.869	6.599	3.120	1.213277	118.997	0.948	0.237	0.092	2.571		0	Molto basso
30	7.00	143.300	84.460	12.511	6.624	3.130	1.183991	118.017	0.946	0.233	0.092	2.524		0	Molto

													suscettibile di liquefazione		basso
31	7.20	147.300	86.499	12.170	6.650	3.140	1.156086	117.074	0.945	0.229	0.092	2.480	Terreno non suscettibile di liquefazione	0	Molto basso
32	7.40	151.300	88.537	11.845	6.675	3.150	1.129466	116.166	0.943	0.226	0.093	2.438		0	Molto basso
33	7.60	155.300	90.576	11.534	6.700	3.160	1.104044	115.290	0.942	0.223	0.093	2.398	Terreno non suscettibile di liquefazione	0	Molto basso
34	7.80	159.300	92.615	11.237	6.726	3.170	1.079741	114.445	0.940	0.219	0.093	2.361	Terreno non suscettibile di liquefazione	0	Molto basso
35	8.00	163.300	94.653	10.953	6.752	3.179	1.056486	113.629	0.939	0.216	0.093	2.326	Terreno non suscettibile di liquefazione	0	Molto basso
36	8.20	167.300	96.692	10.680	6.778	3.189	1.034211	112.841	0.937	0.214	0.093	2.293	Terreno non suscettibile di liquefazione	0	Molto basso
37	8.40	171.300	98.731	10.419	6.805	3.198	1.012855	112.079	0.936	0.211	0.093	2.261	Terreno non suscettibile di liquefazione	0	Molto basso
38	8.60	175.300	100.770	10.169	6.831	3.207	0.9923641	111.343	0.934	0.208	0.093	2.232		0	Molto basso
39	8.80	179.300	102.808	9.928	6.858	3.216	0.9726858	110.630	0.933	0.206	0.093	2.203	Terreno non suscettibile di liquefazione	0	Molto basso
40	9.00	183.300	104.847	9.697	6.885	3.225	0.9537725	109.940	0.931	0.204	0.094	2.177	Terreno non suscettibile di	0	Molto basso

													liquefazione		
41	9.20	187.300	106.886	9.475	6.912	3.234	0.935581	109.271	0.928	0.201	0.093	2.154	Terreno non suscettibile di liquefazione	0	Molto basso
42	9.40	191.300	108.924	9.261	6.940	3.243	0.9180702	108.624	0.923	0.199	0.093	2.139		0	Molto basso
43	9.60	195.300	110.963	9.054	6.967	3.251	0.9012029	107.996	0.918	0.197	0.093	2.124	Terreno non suscettibile di liquefazione	0	Molto basso
44	9.80	199.300	113.002	8.856	6.995	3.260	0.8849441	107.388	0.912	0.195	0.092	2.111	Terreno non suscettibile di liquefazione	0	Molto basso
45	10.00	203.300	115.040	8.664	7.023	3.268	0.8692617	106.797	0.907	0.193	0.092	2.099	Terreno non suscettibile di liquefazione	0	Molto basso
46	10.20	207.300	117.079	8.479	7.051	3.277	0.8541255	106.224	0.902	0.191	0.092	2.087	Terreno non suscettibile di liquefazione	0	Molto basso
47	10.40	211.300	119.118	8.300	7.080	3.285	0.8395073	105.668	0.896	0.190	0.091	2.077	Terreno non suscettibile di liquefazione	0	Molto basso
48	10.60	215.300	121.156	8.128	7.109	3.293	0.8253811	105.127	0.891	0.188	0.091	2.067		0	Molto basso
49	10.80	219.300	123.195	7.961	7.138	3.301	0.8117223	104.603	0.886	0.186	0.091	2.058	Terreno non suscettibile di liquefazione	0	Molto basso
50	11.00	223.300	125.234	7.799	7.167	3.310	0.7985083	104.093	0.880	0.185	0.090	2.050	-	0	Molto basso
51	11.20	227.300	127.272	7.643	7.196	3.317	0.7857178	103.597	0.875	0.183	0.090	2.043		0	Molto

													suscettibile di liquefazione		basso
52	11.40	231.300	129.311	7.491	7.226	3.325	0.7733305	103.115	0.870	0.182	0.089	2.036		0	Molto basso
53	11.60	235.300	131.350	7.345	7.256	3.333	0.7613275	102.646	0.864	0.181	0.089	2.030	Terreno non suscettibile di liquefazione	0	Molto basso
54	11.80	239.300	133.388	7.202	7.286	3.341	0.7496916	102.191	0.859	0.179	0.089	2.025	Terreno non suscettibile di liquefazione	0	Molto basso
55	12.00	243.300	135.427	7.064	7.317	3.349	0.738406	101.747	0.854	0.178	0.088	2.020	Terreno non suscettibile di liquefazione	0	Molto basso
56	12.20	247.300	137.466	6.930	7.348	3.356	0.7274552	101.316	0.848	0.177	0.088	2.016	Terreno non suscettibile di liquefazione	0	Molto basso
57	12.40	251.300	139.504	6.801	7.379	3.364	0.7168244	100.896	0.843	0.176	0.087	2.012	_	0	Molto basso
58	12.60	255.300	141.543	6.674	7.410	3.371	0.7064998	100.487	0.838	0.174	0.087	2.009	Terreno non suscettibile di liquefazione	0	Molto basso
59	12.80	259.300	143.582	6.552	7.441	3.379	0.6964685	100.089	0.832	0.173	0.086	2.006	Terreno non suscettibile di liquefazione	0	Molto basso
60	13.00	263.300	145.620	6.432	7.473	3.386	0.686718	99.701	0.827	0.172	0.086	2.004	Terreno non suscettibile di liquefazione	0	Molto basso
61	13.20	267.500	147.859	74.015	0.401	1.800	0.8223872	81.900	0.822	0.131	0.085	1.535	Terreno non suscettibile di	0	Molto basso

													liquefazione		
62	13.40	271.700	150.098	73.461	0.401	1.803	0.8162313	81.448	0.816	0.130	0.085	1.534	Terreno non suscettibile di liquefazione	0	Molto basso
63	13.60	275.900	152.336	72.919	0.401	1.806	0.8102116	81.005	0.811	0.129	0.084	1.534	-	0	Molto basso
64	13.80	280.100	154.575	72.389	0.401	1.809	0.8043231	80.572	0.806	0.129	0.084	1.534	Terreno non suscettibile di liquefazione	0	Molto basso
65	14.00	284.300	156.814	71.871	0.402	1.812	0.7985612	80.149	0.800	0.128	0.083	1.534	Terreno non suscettibile di liquefazione	0	Molto basso
66	14.20	288.500	159.052	71.363	0.402	1.814	0.7929215	79.734	0.795	0.127	0.083	1.535	Terreno non suscettibile di liquefazione	0	Molto basso
67	14.40	292.700	161.291	70.866	0.402	1.817	0.7873994	79.328	0.790	0.126	0.082	1.536	Terreno non suscettibile di liquefazione	0	Molto basso
68	14.60	296.900	163.530	70.379	0.402	1.820	0.7819912	78.930	0.784	0.126	0.082	1.537	Terreno non suscettibile di liquefazione	0	Molto basso
69	14.80	301.100	165.768	69.902	0.402	1.823	0.7766929	78.540	0.779	0.125	0.081	1.539	Terreno non suscettibile di liquefazione	0	Molto basso
70	15.00	305.300	168.007	69.435	0.403	1.825	0.7715009	78.158	0.774	0.124	0.081	1.540	Terreno non suscettibile di liquefazione	0	Molto basso
71	15.20	309.500	170.246	68.977	0.403	1.828	0.7664117	77.784	0.768	0.124	0.080	1.543	-	0	Molto basso
72	15.40	313.700	172.484	68.528	0.403	1.831	0.7614218	77.417	0.763	0.123	0.080	1.545		0	Molto

													suscettibile di liquefazione		basso
73	15.60	317.900	174.723	68.088	0.403	1.833	0.7565281	77.057	0.757	0.123	0.079	1.548	Terreno non suscettibile di liquefazione	0	Molto basso
74	15.80	322.100	176.962	67.655	0.403	1.836	0.7517276	76.704	0.752	0.122	0.079	1.551	Terreno non suscettibile di liquefazione	0	Molto basso
75	16.00	326.300	179.200	67.232	0.404	1.838	0.7470174	76.358	0.747	0.121	0.078	1.554	Terreno non suscettibile di liquefazione	0	Molto basso
76	16.20	330.500	181.439	66.816	0.404	1.841	0.7423946	76.018	0.741	0.121	0.078	1.557	Terreno non suscettibile di liquefazione	0	Molto basso
77	16.40	334.700	183.678	66.407	0.404	1.843	0.7378566	75.685	0.736	0.120	0.077	1.561	Terreno non suscettibile di liquefazione	0	Molto basso
78	16.60	338.900	185.916	66.006	0.404	1.846	0.7334007	75.357	0.731	0.120	0.077	1.565	Terreno non suscettibile di liquefazione	0	Molto basso
79	16.80	343.100	188.155	65.612	0.404	1.848	0.7290246	75.036	0.725	0.119	0.076	1.570	Terreno non suscettibile di liquefazione	0	Molto basso
80	17.00	347.300	190.394	65.225	0.404	1.851	0.724726	74.721	0.720	0.119	0.075	1.574	Terreno non suscettibile di liquefazione	0	Molto basso
81	17.20	351.500	192.632	64.845	0.405	1.853	0.7205025	74.411	0.715	0.118	0.075	1.579	Terreno non suscettibile di liquefazione	0	Molto basso

IPL (Iwasaki)=0 Zcrit=20 m Rischio=Molto basso